NOAA Technical Memorandum NMFS May 2008 #### DRAFT U.S. PACIFIC MARINE MAMMAL STOCK ASSESSMENTS: 2008 James V. Carretta, Karin A. Forney, Mark S. Lowry, Jay Barlow, Jason Baker, Dave Johnston, Brad Hanson, and Marcia M. Muto with contributions from Dan Lawson, Joe Cordaro, Elizabeth Petras, Dave Johnston, Dale Sweetnam, and Chris Yates NOAA-TM-NMFS-SWFSC-XXX U. S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southwest Fisheries Science Center ### TABLE OF CONTENTS Draft stock assessment reports and appendices revised in 2008 are highlighted; all others will be reprinted in the final 2008 stock assessments as they appear in the 2007 Pacific Region Stock Assessment Reports (Carretta *et al.* 2007). ### **PINNIPEDS** | CALIFORNIA SEA LION (Zaiopnus caujornianus caujornianus): U.S. Stock | | |--|-----| | HARBOR SEAL (Phoca vitulina richardsi): California Stock | | | HARBOR SEAL (Phoca vitulina richardsi): Oregon & Washington Coast Stock | xx | | HARBOR SEAL (<i>Phoca vitulina richardsi</i>): Washington Inland Waters Stock | xx | | NORTHERN ELEPHANT SEAL (Mirounga angustirostris): California Breeding Stock | xx | | GUADALUPE FUR SEAL (Arctocephalus townsendi) | XX | | NORTHERN FUR SEAL (Callorhinus ursinus): San Miguel Island Stock | XX | | HAWAIIAN MONK SEAL (Monachus schauinslandi) | 1 | | · | | | CETACEANS - U.S. WEST COAST | | | CEITICEIT IS C.S. WEST COTIST | | | | | | HARBOR PORPOISE (Phocoena phocoena): Morro Bay Stock | | | HARBOR PORPOISE (Phocoena phocoena): Monterey Bay Stock | | | HARBOR PORPOISE (Phocoena phocoena): San Francisco-Russian River Stock | | | HARBOR PORPOISE (Phocoena phocoena): Northern California/Southern Oregon Stock | | | HARBOR PORPOISE (Phocoena phocoena): Oregon/Washington Coast Stock | XX | | HARBOR PORPOISE (Phocoena phocoena): Washington Inland Waters Stock | | | DALL'S PORPOISE (Phocoenoides dalli): California/Oregon/Washington Stock | | | PACIFIC WHITE-SIDED DOLPHIN (<i>Lagenorhynchus obliquidens</i>): California/Oregon/Washington, Northern and Southern Stocks | | | California/Oregon/Washington, Northern and Southern Stocks | 14 | | RISSO'S DOLPHIN (Grampus griseus): California/Oregon/Washington Stock | 20 | | BOTTLENOSE DOLPHIN (Tursiops truncatus): California Coastal Stock | | | BOTTLENOSE DOLPHIN (Tursiops truncatus): California/Oregon/Washington Offshore Stock | 30 | | STRIPED DOLPHIN (Stenella coeruleoalba): California/Oregon/Washington Stock | 35 | | SHORT-BEAKED COMMON DOLPHIN (Delphinus delphis): California/Oregon/Washington Stock | 39 | | LONG-BEAKED COMMON DOLPHIN (Delphinus capensis): California Stock | | | NORTHERN RIGHT-WHALE DOLPHIN (Lissodelphis borealis): California/Oregon/Washington | 52 | | KILLER WHALE (Orcinus orca): Eastern North Pacific Offshore Stock | 57 | | KILLER WHALE (Orcinus orca): Eastern North Pacific Southern Resident Stock | 63 | | SHORT-FINNED PILOT WHALE (Globicephala macrorhynchus): California/Oregon/Washington | | | BAIRD'S BEAKED WHALE (Berardius bairdii): California/Oregon/Washington Stock | 74 | | MESOPLODONT BEAKED WHALES (Mesoplodon spp.): California/Oregon/Washington Stocks | | | CUVIER'S BEAKED WHALE (Ziphius cavirostris): California/Oregon/Washington Stock | | | PYGMY SPERM WHALE (Kogia breviceps): California/Oregon/Washington Stock | | | DWARF SPERM WHALE (Kogia sima): California/Oregon/Washington Stock | | | SPERM WHALE (Physeter macrocephalus): California/Oregon/Washington Stock | | | HUMPBACK WHALE (Megaptera novaeangliae): Eastern North Pacific Stock | 104 | | BLUE WHALE (Balaenoptera musculus): Eastern North Pacific Stock | | | FIN WHALE (Balaenoptera physalus): California/Oregon/Washington Stock | | | BRYDE'S WHALE (<i>Balaenoptera edeni</i>): Eastern Tropical Pacific Stock | | | SEI WHALE (Balaenoptera borealis): Eastern North Pacific Stock | | | MINKE WHALE (Balaenoptera acutorostrata): California/Oregon/Washington Stock | | | | | ### **CETACEANS - HAWAII** | ROUGH-TOOTHED DOLPHIN (Steno bredanensis): Hawaiian Stock | xxx | |---|--------------| | RISSO'S DOLPHIN (Grampus griseus): Hawaiian Stock | xxx | | BOTTLENOSE DOLPHIN (Tursiops truncatus): Hawaiian Stock | | | PANTROPICAL SPOTTED DOLPHIN (Stenella attenuata): Hawaiian Stock | xxx | | SPINNER DOLPHIN (Stenella longirostris): Hawaiian Stock | xxx | | STRIPED DOLPHIN (Stenella coeruleoalba): Hawaiian Stock | xxx | | FRASER'S DOLPHIN (Lagenodelphis hosei): Hawaiian Stock | xxx | | MELON-HEADED WHALE (Peponocephala electra): Hawaiian Stock | | | PYGMY KILLER WHALE (Feresa attenuata): Hawaiian Stock | xxx | | FALSE KILLER WHALE (Pseudorca crassidens): Pacific Islands Region Stocks (Hawaii Pelagic, Haw | aii Insular, | | and Palmyra Atoll) | | | KILLER WHALE (Orcinus orca): Hawaiian Stock | xxx | | SHORT-FINNED PILOT WHALE (Globicephala macrorhynchus): Hawaiian Stock | xxx | | BLAINVILLE'S BEAKED WHALE (Mesoplodon densirostris): Hawaiian Stock | xxx | | CUVIER'S BEAKED WHALE (Ziphius cavirostris): Hawaiian Stock | xxx | | LONGMAN'S BEAKED WHALE (Indopacetus pacificus): Hawaiian Stock | xxx | | PYGMY SPERM WHALE (Kogia breviceps): Hawaiian Stock | xxx | | DWARF SPERM WHALE (Kogia sima): Hawaiian Stock | | | SPERM WHALE (Physeter macrocephalus): Hawaiian Stock | xxx | | BLUE WHALE (Balaenoptera musculus): Western North Pacific Stock | | | FIN WHALE (Balaenoptera physalus): Hawaiian Stock | | | BRYDE'S WHALE (Balaenoptera edeni): Hawaiian Stock | | | SEI WHALE (Balaenoptera borealis): Hawaiian Stock | xxx | | MINKE WHALE (Balaenoptera acutorostrata): Hawaiian Stock | xxx | | ADDENDICES | | | <u>APPENDICES</u> | | | APPENDIX 1: Description of U.S. Commercial Fisheries | 140 | | APPENDIX 2: Cetacean Survey Effort | | | APPENDIX 3: Summary of Draft 2008 II S. Pacific Marine Mammal Stock Assessment Reports | | #### **PREFACE** Under the 1994 amendments to the Marine Mammal Protection Act (MMPA), the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) are required to publish Stock Assessment Reports for all stocks of marine mammals within U.S. waters, to review new information every year for strategic stocks and every three years for non-strategic stocks, and to update the stock assessment reports when significant new information becomes available. This report presents revised stock assessments for 27 Pacific marine mammal stocks under NMFS jurisdiction, including 9 "strategic" stocks and 18 "non-strategic" stocks (see summary table). New abundance estimates are available for 20 stocks, including 5 endangered species of large whales, the Hawaiian monk seal, and southern resident killer whales. Information on the remaining 37 Pacific region stocks will be reprinted without revision in the final 2008 reports and currently appears in the 2007 reports (Carretta et al. 2007). Stock Assessments for Alaskan marine mammals are published by the National Marine Mammal Laboratory (NMML) in a separate report. Pacific region stock assessments include those studied by the Southwest Fisheries Science Center (SWFSC, La Jolla, California), the Pacific Islands Fisheries Science Center (PIFSC, Honolulu, Hawaii), the National Marine Mammal Laboratory (NMML, Seattle, Washington), and the Northwest Fisheries Science Center in Seattle, WA. Northwest Fisheries Science Center staff prepared the report on the Eastern North Pacific Southern Resident killer whale. Pacific Islands Fisheries Science Center staff prepared the report on the Hawaiian monk seal. Southwest Fisheries Science Center staff prepared stock assessments for the remaining 25 stocks, which include 22 U.S. west coast cetacean stocks and three stocks of false killer whales (Hawaii Insular, Hawaii Pelagic, and Palmyra Atoll). False killer whales in the Pacific Islands region have been divided into three stocks, based on recent sighting and genetic data that supports the designation of a 'Hawaii Insular' stock within the 25-75 nmi longline exclusion zone around the Main Hawaiian Islands. The other two stocks include the "Palmyra Atoll" stock and the "Hawaii Pelagic" stock (previously called the "Hawaii" stock in the 2007 Stock Assessment Reports). The "Hawaii Pelagic" stock of false killer whales is the only strategic stock of the three. The status of one U.S. west coast cetacean stock ('California long-beaked common dolphin') has changed from "strategic" to "non-strategic", based on new estimates of abundance, a revised PBR, and updates of incidental fishery mortality levels. The stock assessment for the Eastern Tropical Pacific stock of Bryde's whale will not appear in the 2008 Pacific reports, following a recommendation from the Pacific Regional Scientific Review Group (PSRG) to eliminate this report because the stock rarely enters U.S. waters. The stock assessment for the Hawaiian stock of Bryde's whales will be retained in the final 2008 reports. New information on pot and trap fisheries is included in Appendix 1. Documentation of abundance estimates used in the stock assessments is reviewed at the end of Appendix 2. Draft versions of the stock assessment reports were reviewed by the Pacific Scientific Review Group at the January 2008 Monterey, California meeting. The authors also wish to thank those who provided unpublished data, especially Robin Baird and Joseph Mobley, who provided valuable information on Hawaiian cetaceans. We also thank those who provided input during the public comment period. Any omissions or errors are the sole responsibility of the authors. This is a working document and individual stock assessment reports will be updated as new information on marine mammal stocks and fisheries becomes available. Background information and guidelines for preparing stock assessment reports are reviewed in Wade
and Angliss (1997). The authors solicit any new information or comments which would improve future stock assessment reports. These Stock Assessment Reports summarize information from a wide range of sources and an extensive bibliography of all sources is given in each report. We strongly urge users of this document to refer are courses rather than citing this report or previous Stock Assessment Reports. If | to and cite <i>originai</i> literat | ure sources ratner tnar | n citing this report | or previous | Stock Asse | ssment K | eports. | J | |-------------------------------------|---------------------------|----------------------|-------------|-------------|------------|----------|---| | the original sources are 1 | not accessible, the citat | tion should follow | the format: | [Original : | source], a | as cited | i | | [this Stock Assessment Re | eport citation]. | | | _ | Cover photograph: References: - Carretta, J.V., K.A. Forney, M.S. Lowry, J. Barlow, J. Baker, Brad Hanson, and M.M. Muto. 2007. U.S. Pacific Marine Mammal Stock Assessments: 2007. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-414. 316p. - Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. NOAA Technical Memorandum NMFS-OPR-12. Available from Office of Protected Resources, National Marine Fisheries Service, Silver Spring, MD. 93p. #### HAWAIIAN MONK SEAL (Monachus schauinslandi) #### STOCK DEFINITION AND GEOGRAPHIC RANGE Hawaiian monk seals are distributed predominantly in six Northwestern Hawaiian Islands (NWHI) subpopulations at French Frigate Shoals, Laysan and Lisianski Islands, Pearl and Hermes Reef, and Midway and Kure Atoll. Small numbers also occur at Necker, Nihoa, and the main Hawaiian Islands (MHI). Genetic variation among NWHI monk seals is extremely low and may reflect both a long-term history at low population levels and more recent human influences (Kretzmann et al. 1997, 2001). On average, 10-15% of the seals migrate among the NWHI subpopulations (Johnson and Kridler 1983; Harting 2002). Thus, the NWHI subpopulations are not isolated, though the different island subpopulations have exhibited considerable demographic independence. Observed interchange of individuals among the NWHI and MHI regions is extremely rare, suggesting these may be more appropriately designated as separate stocks. Further evaluation of a separate MHI stock will be pursued following genetic stock structure analysis (currently underway) and additional studies of MHI monk seals. In the mean time, the species is managed as a single stock. #### POPULATION SIZE The best estimate of the total population size is $\frac{1,247}{2}$ 1,208. This estimate is the sum of estimated abundance at the six main Northwest Hawaiian Islands subpopulations, an extrapolation of counts at Necker and Nihoa Islands, and an estimate of minimum abundance in the main Hawaiian Islands. The number of individual seals identified was used as the population estimate at NWHI sites where total enumeration was achieved according to the criteria established by Baker et al. (2006). Where total enumeration was not achieved, capture-recapture estimates from Program CAPTURE were used (Baker 2004; Otis et al. 1978, Rexstad & Burnham 1991, White et al. 1982). When no reliable estimator was obtainable in Program CAPTURE (i.e., the model selection criterion was < 0.75, following Otis et al. 1978), the total number of seals identified was the best available estimate. Finally, sometimes capture-recapture estimates are less than the known minimum abundance (Baker 2004), and in these cases the total number of seals identified was used. In 2005-2006, identification efforts were conducted during twoto fivesix month studies at all main reproductive sites. Total enumeration was achieved at Lisianski Island Midway Atoll, and at Midway Atoll a capture-recapture estimate capture estimates were obtained at the remaining sites. At Pearl and Hermes Reef and Kure Atoll, this estimate was lower than the known minimum abundance, so that the latter was considered the best estimate. At the remaining sites, no reliable capture-recapture estimate was obtained, and in these cases minimum abundance was also used. The total abundance estimate at the six main subpopulations in 20062005 was 1,016 1,072 seals (including 165163 pups). Monk seals also occur at Necker and Nihoa Islands, where counts are conducted from zero to a few times in a single year. Abundance is estimated by correcting the mean of all beach counts accrued over the past five years. The mean (±SD) of all counts (excluding pups) conducted between 20022001 and 20062005 was 12.3 (± 5.5) 14.4 (± 4.3) at Necker Island and 23.0 (± 6.6) 17.7 (±8.3) at Nihoa Island (Johanos and Baker 2004, 2005, 2007, in press, in prep.). The relationship between mean counts and total abundance at the reproductive sites indicates that the total abundance can be estimated by multiplying the mean count by a correction factor of 2.89 (NMFS unpubl. data). Resulting estimates (plus the average number of pups known to have been born during 20021-20065) are 37.3 (±15.9)43.3 (±12.5) at Necker Island and 71.7 (± 19.2) 54.9 (± 24.0) at Nihoa Island. The only complete and systematic surveys for monk seals in the MHI were conducted in 2000 and 2001 (Baker and Johanos 2004). The NMFS collects information on seal sightings reported by a variety of sources. Recently, the number of such reports has increased and related database improvement efforts have been underway. The total number of individually identifiable seals documented in this way in 20062005 was 8377, the current best minimum abundance estimate. #### **Minimum Population Estimate** The total number of seals (1,016 1,065) identified at the six main NWHI reproductive sites is the best estimate of minimum population size at those sites. Minimum population sizes for Necker and Nihoa Islands (based on the formula provided by Wade and Angliss (1997)) are 26 and 5734 and 39, respectively. The minimum abundance estimate for the main Hawaiian Islands in 20062005 is 8377 seals. The minimum population size for the entire stock (species) is the sum of these estimates, or 1,1831,214 seals. #### **Current Population Trend** The total of mean non-pup beach counts at the six main reproductive NWHI subpopulations in 20062005 is 66%67% lower than in 1958. The trend in total abundance at the six main NWHI subpopulations estimated as described above is shown in Figure 1. A log-linear regression of estimated abundance on year from 1998 (the first year for which a reliable total abundance estimate has been obtained) to 20062005 estimates that abundance declined -3.9%-3.8% yr⁻¹ (95% CI = -4.8% to -3.0% yr⁻¹ -5.0% to -2.6% yr⁻¹). #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES Trends in abundance vary considerably among the six main subpopulations. Mean non-pup beach counts are used as a long-term index of abundance for years when data are insufficient to estimate total abundance as described above). Beach counts at French Frigate Shoals steadily declined 74% 73% from 1989-20062005. Trends have been more variable among the other sites, but abundance is lower at all subpopulations compared to 2000. Populations at Laysan and Lisianski Islands have remained relatively stable since approximately 1990, though the former has tended to increase slightly while the latter has decreased slowly. Until recently, the three westernmost subpopulations, Kure, Midway and Pearl and Hermes Reef exhibited substantial growth. The subpopulation at Pearl and Hermes Reef increased after the mid 1970s. Prior to 1999, beach count increases of up to 7% yr⁻¹ were observed at Pearl and Hermes Reef, and this is the highest estimate of the maximum net productivity rate (R_{max}) observed for this species. Since 2000, low juvenile survival, thought to be due largely to food limitation, has been widespread with rare exception in the NWHI, resulting in the population decline (Fig. 1). While the MHI monk seal population may be on the rise (Baker and Johanos 2004), this remains unconfirmed and abundance appears to be too low to strongly influence current total stock trends. **Figure 1.** Trend in abundance of monk seals at the six main Northwestern Hawaiian Islands subpopulations, based on a combination of total enumeration and capture–recapture estimates. Error bars indicate ± 2 s.e. (from variances of capture–recapture estimates). Fitted log-linear regression line is shown. #### POTENTIAL BIOLOGICAL REMOVAL Potential biological removal (PBR) is designed to allow stocks to recover to, or remain above, the maximum net productivity level (MNPL) (Wade 1998). An underlying assumption in the application of the PBR equation is that marine mammal stocks exhibit certain dynamics. Specifically, it is assumed that a depleted stock will naturally grow toward OSP (Optimum Sustainable Population), and that some surplus growth could be removed while still allowing recovery. The Hawaiian monk seal population is far below historical levels and has declined 3.9% 3.8% yr⁻¹ on average since 1998. Thus, for unknown reasons, the stock's dynamics do not conform to the underlying model for calculating PBR such that PBR for the Hawaiian monk seal is undetermined. #### **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY** Human-related mortality has caused two major declines of the Hawaiian monk seal (Ragen 1999). In the 1800s, this species was decimated by sealers, crews of wrecked vessels, and guano and feather hunters (Dill and Bryan 1912; Wetmore 1925; Bailey 1952; Clapp and Woodward 1972). Following a period of at least partial recovery in the first half of the 20th century (Rice 1960), most subpopulations again declined. This second decline has not been fully explained, but trends
at several sites appear to have been determined by human disturbance from military or U.S. Coast Guard activities (Ragen 1999; Kenyon 1972; Gerrodette and Gilmartin 1990). Currently, human activities in the NWHI are limited and human disturbance is relatively rare, but human-seal interactions have become an important issue in the MHI. #### **Fishery Information** Fishery interactions with monk seals can include direct interaction with gear (hooking or entanglement), seal consumption of discarded catch, and competition for prey. Entanglement of monk seals in derelict fishing gear, which is believed to originate outside the Hawaiian archipelago, is described in a separate section below. In the past, monk seal interactions with fisheries in the NWHI were documented, but direct interactions have since become rare or non-existent, and issues related to competition have also somewhat abated. For example, in 1986 a seal died from entanglement in the bridle rope of lobster trap set in the NWHI lobster fishery. Possible reduction of monk seal prey by that fishery (through removal of both target and bycatch species) has also been raised as a concern, though whether the fishery indirectly impacted monk seals remains unresolved. However, the NWHI lobster fishery closed in 2000 and on June 15, 2006, President Bush signed a proclamation that created the Northwestern Hawaiian Islands Marine National Monument. Subsequent regulations prohibit commercial fishing in the Monument except for the bottomfish fishery (and associated pelagic species catch), which may continue until 2011 for no more than 5 years (U.S. Department of Commerce and Department of the Interior, 2006). In the past, interactions between the Hawaii-based domestic pelagic longline fishery and monk seals were documented (NMFS 2002). This fishery targets swordfish and tunas and does not compete with Hawaiian monk seals for prey. In October 1991, in response to 13 unusual seal wounds thought to have resulted from interactions with this fishery, NMFS established a Protected Species Zone extending 50 nautical miles around the NWHI and the corridors between the islands. Subsequently, no additional monk seal interactions with the longline fishery have been confirmed. Since 1991, there have been no observed or reported interactions of this fishery with monk seals. The NWHI bottomfish handline fishery has been reported to interact with monk seals. This fishery landed between 95 and 201 metric tons per year from 1989-20062005 (Kawamoto 1995; Kawamoto, pers. comm.) and the number of vessels is currently capped at 9 (8 made NWHI trips in 20062005, Kawamoto, pers. comm.). Nitta and Henderson (1993) documented reports of seals taking bottomfish and bait off fishing lines, and reports of seals attracted to discarded bycatch. A Federal observer program of the fishery began in the fourth quarter of 2003 and no monk seal interactions were observed until the program was suspended in 2006 have been observed to date. NMFS prepared a Section 7 Biological Opinion on the Fishery Management Plan for the bottomfish fishery, and concluded that the operation of this fishery is not likely to jeopardize the continued existence of the Hawaiian monk seal nor would it likely destroy or adversely modify the monk seal's critical habitat (NMFS 2002). The Biological Opinion has no incidental take statement. An EIS for the bottomfish fishery management plan has also been prepared. Fishermen indicate that they have engaged in mitigating activity over the past several years, e.g., holding discards on-board, etc. (NMFS pers. comm.). The ecological effects of this fishery on monk seals (e.g., competition for prey or alteration of prey assemblages) are unknown. However, published studies on monk seal prey selection based upon scat/spew analysis and seal-mounted video revealed some evidence that monk seals fed on families of bottomfish which contain commercial species (many prey items recovered from scats and spews were identified only to the level of family; Goodman-Lowe 1998, Longenecker et al. 2006, Parrish et al. 2000). Recent quantitative fatty acid signature analysis (QFASA) results support previous studies illustrating that monk seals consume a wide range of species. However, deepwater-slope species, including two commercially targeted bottomfish, were estimated to comprise a large portion of the diet for some individuals. Similar species were estimated to be consumed by seals regardless of location, age or gender but the relative importance of each species varied. Diets differed considerably between individuals. These results highlight the need to better understand potential ecological interactions with the Hawaiian bottomfish fishery. Recent efforts have expanded bottomfish species representation in a fatty acid library to help clarify their potential importance in the monk seal diet using quantitative fatty acid signature analysis. Results of this research effort are expected to be available in 2007. As noted above, this fishery is slated to be closed by 2011. In contrast to the NWHI, fishery interactions are a serious concern in the MHI, especially involving State of Hawaii managed nearshore fisheries. One seal was found dead in a nearshore (non-recreational) gillnet in 1994 and a second seal was found dead in 1995 with a hook lodged in its esophagus. A total of 3732 seals have been observed with embedded hooks in the MHI during 1990-20062005. Several incidents, including the dead hooked seal mentioned above, involved hooks used to catch ulua (jacks, *Caranx* spp.). Interactions in the MHI appear to be on the rise, as most hookings have occurred since 2000, and fourthree seals have been observed entangled in nearshore gillnets during 2002-2006since 2002 (NMFS unpubl. data). The 20062005 nearshore fishery mortalityserious injury, reported in (Table 1), involved a weaned female pup who became entangled and drowned seal observed entangled and struggling in a nearshore gillnet off Oahu. By the time a NMFS contract veterinarian arrived on the scene, the seal was gone and fishermen were retrieving the net, which had a large hole presumably where the seal had been caught. Because it was not possible to determine whether the seal escaped uninjured, entangled, or whether it had died, this case was judged as a serious injury. The MHI bottomfish handline fishery may also has potential to interact with monk seals as evidenced by the aforementioned fatty acid research, though no mortalities or serious injuries have been attributed to the fishery (Table 1). **Table 1.** Summary of mortality and serious injury of Hawaiian monk seals due to fisheries and calculation of annual mortality rate. n/a indicates that sufficient data are not available. | Fishery Name | Year | Data
Type | % Obs.
coverage | Observed/Reported
Mortality/Serious Injury | Estimated
Mortality/
Serious Injury | Mean
Takes
(CV) | |--------------------------------|---|--|--|---|---|-----------------------| | NWHI
Lobster | 2000-present | fishery closed | | | Serrous rijury | (01) | | Pelagic
Longline | 2002
2003
2004
2005
2006 | observer
observer
observer
observer
observer | 24.6%
22.2%
24.6%
26.1% &
100% 1
22.1% & 100% 1 | 0
0
0
0
0 | 0
0
0
0 | 0 (0) | | NWHI
Bottomfish | 2002
2003 ²
2004
2005
2006 | Logbook
observer
observer
observer
observer | n/a
33%
18.3%
25.0%
3.9% | n/a
0
0
0
0 | n/a
0
0
0
0 | 0 (0) | | MHI
Bottomfish ³ | 2002
2003
2004
2005
2006 | n/a | none | 0
0
0
0
0 | n/a | n/a | | Nearshore ³ | 2002
2003
2004
2005
2006 | n/a | none | 1
1
2
1
1 | n/a | n/a | #### **Fishery Mortality Rate** Total fishery mortality and serious injury cannot be considered to be insignificant and approaching a rate of zero. Monk seals are being hooked and entangled in the MHI at a rate which has not been reliably assessed. The information above represents only reported direct interactions and without purpose-designed observation effort the true interaction rate cannot be estimated. Monk seals also die from entanglement in fishing gear and other debris throughout their range (likely originating from various countries), and NMFS along with partner agencies, is pursuing a program to mitigate entanglement (see below). Indirect interactions (i.e., involving competition for prey or consumption of discards) remain the topic of ongoing investigation. #### **Entanglement in Marine Debris** Hawaiian monk seals become entangled in fishing and other marine debris at rates higher than reported for other pinnipeds (Henderson 2001). A total of 268261 cases of seals entangled in fishing gear or other debris have been observed through 20062005 (Henderson 2001; NMFS, unpubl. data), including seven documented mortalities resulting from entanglement in fisheries debris (Henderson 1990, 2001; NMFS, unpubl. data). The fishing gear fouling the reefs and beaches of the NWHI and entangling monk seals only rarely includes types used in Hawaiian fisheries. For example, trawl net and monofilament gillnet accounted for approximately 35% and 34% of the debris removed from reefs in the NWHI by weight, and trawl net alone accounted for 88% of the debris by frequency (Donohue et al. 2001). Yet there are no commercial trawl fisheries in Hawaii. The NMFS and partner agencies continue to mitigate impacts of marine debris on monk seals as well as ¹ Observer coverage for deep and shallow-set components of the fishery, respectively ² Observer coverage began in fourth quarter of 2003. Data for that quarter provided. ³ Data for MHI bottomfish and
nearshore fisheries are based upon incidental observations (i.e., hooked seals). All hookings not clearly attributable to either fishery with certainty were attributed to the bottomfish fishery, and hookings which resulted in injury of unknown severity were classified as serious. turtles, coral reefs and other wildlife. Marine debris is removed from beaches and entangled seals during annual population assessment activities at the main reproductive sites. Since 1996, annual debris survey and removal efforts in the NWHI coral reef habitat have been ongoing (Donohue et al. 2000, Donohue et al. 2001). #### **Other Mortality** Since 1982, 23 seals died during rehabilitation efforts that ceased in 1994.; Additionally, two died in captivity, two died when captured for translocation, one was euthanized (an aggressive male known to cause mortality), fourthree died during captive research and three died during field research (Baker and Johanos 2002). Included in the foregoing is a juvenile female that died while in NMFS care during a 20062005 NMFS captive care research project at Midway Atoll. a weaned pup died while in NMFS care at a captive facility on Oahu for testing and potential treatment for leptospirosis. Post mortem examination did not reveal a cause of death. In 1986, a weaned pup died at East Island, French Frigate Shoals, after becoming entangled in wire left when the U.S. Coast Guard abandoned the island three decades earlier. In 1991, a seal died after becoming trapped behind an eroding seawall on Tern Island, French Frigate Shoals. The only dDocumented cases of illegal killing of a Hawaiian monk seals include occurred when a resident of Kauai killinged an adult female in 1989 and the 2006 drowning noted above, as the unidentified gillnet fisherman was not compliant with State regulations. Other sources of mortality that impede recovery include food limitation (see Habitat Issues below), single and multiple-male aggression (mobbing), shark predation, and disease/parasitism. Multiple-male aggression has primarily been identified as a problem at Laysan and Lisianski Islands, though it has also been documented at other subpopulations. In 1994, 22 adult males were removed from Laysan Island, and only six five seals are thought to have died from multiple-male aggression at this site since their removal (1995-20062005). Attacks by single adult males have resulted in several monk seal mortalities, most notably at French Frigate Shoals in 1997, where at least 8 pups died from this cause. Many more pups were likely killed in the same way but the cause of their deaths could not be confirmed. Two males that killed pups in 1997 were translocated to Johnston Atoll, 870 km to the southwest. Subsequently, mounting injury to pups has decreased. Shark-related injury and mortality incidents appeared to have increased in the late 1980s and early 1990s at French Frigate Shoals, but such mortality was probably not the primary cause of the decline at this site (Ragen 1993). However, shark predation has accounted for a significant portion of pup mortality in recent years. At French Frigate Shoals in 1999, 17 pups were observed injured by large sharks, and at least 3 were confirmed to have died from shark predation (Johanos and Baker 2001). As many as 22 pups of a total 92 born at French Frigate Shoals in 1999 were likely killed by sharks. After 1999, losses of pups to shark predation have been fewer, but this source of mortality remains a serious concern. Various mitigation efforts have been undertaken by NMFS in cooperation with the U. S. Fish and Wildlife Service (USFWS), which manages French Frigate Shoals as part of the Hawaiian Islands National Wildlife Refuge. An Unusual Mortality Event (UME) contingency plan has recently been published for the monk seal (Yochem et al. 2004). While disease effects on monk seal demographic trends are uncertain, there is concern that diseases of livestock, feral animals, pets or humans could be transferred to naive monk seals in the main Hawaiian Islands and potentially spread to the core population in the NWHI. Recent diagnoses (R. Braun, pers. comm.) confirm that in 2003 and 2004, two deaths of free-ranging monk seals are attributable to diseases not previously found in the species: leptospirosis and toxoplasmosis. Leptospira bacteria are found in many of Hawaii's streams and estuaries and are associated with livestock and rodents. Cats, domestic and feral, are a common source of toxoplasma. #### STATUS OF STOCK In 1976, the Hawaiian monk seal was designated depleted under the Marine Mammal Protection Act of 1972 and as endangered under the Endangered Species Act of 1973. The species is well below its OSP and has not recovered from past declines. Therefore, the Hawaiian monk seal is characterized as a strategic stock. #### **Habitat Issues** Vessel groundings pose a continuing threat to monk seals and their habitat, through potential physical damage to reefs, oil spills, and release of debris into habitats. The substantial decline at French Frigate Shoals is likely related to lack of available prey and subsequent emaciation and starvation. Two leading hypotheses to explain the lack of prey are 1) the local population reached its carrying capacity in the 1970s and 1980s, diminishing its own food supply, and 2) carrying capacity was simultaneously reduced by changes in oceanographic conditions and a subsequent decline in productivity (Polovina et al. 1994; Craig and Ragen 1999). Similarly, recently observed pPoor juvenile survival rates in recent years (Baker and Thompson 2007, Baker et al. 2007) suggest that prey availability may be limiting recovery of other NWHI monk seals subpopulations. A variety of strategies for improving juvenile survival are being considered and will be developed through an experimental approach in coming years. In Autumn 2006 a test project to provide nutritional support and care to juvenile monk seals was initiated. Goodman-Lowe (1998) provided information on prey selection using hard parts in scats and spewings. Information on at-sea movement and diving is available for seals at all six main subpopulations in the NWHI using satellite telemetry (Stewart et al. 2006). Preliminary studies to describe the foraging habitat of monk seals in the MHI are reported in Littnan et al. (2006). Tern Island is the site of a USFWS refuge station, and is one of two sites in the NWHI accessible by aircraft. During World War II, the U.S. Navy enlarged the island to accommodate the runway, and a sheet-pile seawall was constructed to maintain the modified shape of the island. Degradation of the seawall created entrapment hazards for seals and other wildlife. Erosion of the sea wall also raised concerns about the potential release of toxic wastes into the ocean. The USFWS began construction on the Tern Island sea wall in 2004 to reduce entrapment hazards and protect the island shoreline. The USFWS considers this a high priority project to complete, and is pursuing funding to that end. Another habitat issue involves loss of terrestrial habitat at French Frigate Shoals, where pupping and resting islets have shrunk or virtually disappeared (Antonelis et al. 2006). Projected increases in global average sea level (Church et al. 2001) may further significantly reduce terrestrial habitat for monk seals in the NWHI (Baker, Littnan and Johnston, 2006). There are indications that monk seal abundance is increasing in the main Hawaiian Islands (Baker and Johanos 2004). Further, the excellent condition of pups weaned on these islands suggests that there may be ample prey resources available. If the monk seal population does expand in the MHI, it may bode well for the species' recovery and long-term persistence. In contrast, there are many challenges that may limit the potential for growth in this region. The human population in the MHI is approximately 1.2 million compared to fewer than 100 in the NWHI, so that the potential impact of disturbance in the MHI is great. As noted above, the hooking of monk seals by fishermen in the MHI is another source of injury and mortality. Finally, vessel traffic in the populated islands carries the potential for collision with seals and impacts from oil spills. Thus, issues surrounding monk seals in the main Hawaiian Islands will likely become an increasing focus for management and recovery of this species. #### REFERENCES - Antonelis, G. A., J. D. Baker, T. C. Johanos, R. C. Braun, and A. L. Harting.2006. Hawaiian monk seal (*Monachus schauinslandi*): Status and Conservation Issues. Atoll Res. Bull. 543:75-101. Bailey, A. M. 1952. The Hawaiian monk seal. Museum Pictorial, Denver Museum of Natural History 7:1-32. - Baker, J. D. 2004. Evaluation of closed capture-recapture methods to estimate abundance of Hawaiian monk seals, *Monachus schauinslandi*. Ecological Applications 14:987-998. - Baker, J.D., A.L. Harting, and T.C. Johanos. 2006. Use of discovery curves to assess abundance of Hawaiian monk seals. Marine Mammal Science 22:847-861. - Baker, J. D. and T. C. Johanos. 2003. Abundance of Hawaiian monk seals in the main Hawaiian Islands. Biological Conservation 116:103-110. - Baker, J. D. and T. C. Johanos. 2002. Effects of research handling on the endangered Hawaiian monk seal. Mar. Mamm. Sci. 18:500-512. - Baker J. D., C. L. Littnan, and D. W. Johnston. 2006. Potential effects of sea-level rise on the terrestrial habitats of endangered and endemic megafauna in the Northwestern Hawaiian Islands. Endangered Species Research 4:1-10 - Baker, J.D., J.J. Polovina, and E.A. Howell. 2007. Effect of variable oceanic productivity on the survival of an upper trophic predator, the Hawaiian monk seal, Monachus schauinslandi. Marine Ecology Progress Series 346:277-283. - Baker J.D. and P.M. Thompson. 2007. Temporal and spatial variation in age-specific survival rates of a long-lived mammal, the Hawaiian monk seal. Proceedings of the Royal Society B 274:407-415. - Clapp,
R. B., and P. W. Woodward. 1972. The natural history of Kure Atoll, Northwestern Hawaiian Islands, Atoll Res. Bull. 164:303-304. - Church, J.A., Gregory, J.M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M.T., Qin, D., and Woodworth, P.L. (2001). *Chapter 11: Changes in sea level*. Climate change 2001: the scientific basis. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P., Dai, X., Maskell, K. and Johnson, C.I. (editors): Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p. 641-693. - Craig, M. P. and T. J. Ragen. 1999. Body size, survival, and decline of juvenile Hawaiian monk seals, Monachus schauinslandi. Mar. Mamm. Sci. 15(3): 786–809. - Dill, H. R., and W. A. Bryan. 1912. Report on an expedition to Laysan Island in 1911. U.S. Dept. of Agric. Surv. Bull. 42:1-30. - Donohue, M. J., R. Brainard, M. Parke, and D. Foley. 2000. Mitigation of environmental impacts of derelict fishing gear through debris removal and environmental monitoring. *In* Hawaiian Islands Humpback Whale National Marine Sanctuary, Proceedings of the International Marine Debris Conference on Derelict Fishing Gear and the Ocean Environment, 6-11 August 2000, Honolulu, Hawaii. p. 383-402. http://hawaiihumpbackwhale.noaa.gov/special_offerings/sp_off/proceedings.html. - Donohue, M.J., R.C. Boland, C.M. Sramek, and G.A. Antonelis. 2001. Derelict fishing gear in the Northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems. Marine Pollution Bulletin 42(12):1301_1312. - Forney, K.A., J. Barlow, M.M. Muto, M. Lowry, J. Baker, G. Cameron, J. Mobley, C. Stinchcomb, and J.V. Carretta. 2000. U.S. Pacific Marine Mammal Stock Assessments: 2000. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-SWFSC-300. 276 p. - Gerrodette, T. M., and W. G. Gilmartin. 1990. Demographic consequences of changed pupping and hauling sites of the Hawaiian monk seal. Conserv. Biol. 4:423-430. - Goodman-Lowe, G. D. 1998. Diet of the Hawaiian monk seal (*Monachus schauinslandi*) from the northwestern Hawaiian islands during 1991 to 1994. Marine Biology 132:535-546. - Harting, A.L. 2002. Stochastic simulation model for the Hawaiian monk seal. PhD thesis, Montana State University, 328 p. - Henderson, J. R. 1990. Recent entanglements of Hawaiian monk seals in marine debris. <u>In</u> R. S. Shomura and M. L. Godfrey (eds.), Proceedings of the Second International Conference on Marine Debris, April 2-7, 1989, Honolulu, Hawaii, p. 540-553. U.S. Dep. Commer., NOAA, Tech. Memo. NMFS-SWFSC-154. - Henderson, J.R. 2001. A Pre_ and Post_MARPOL Annex V Summary of Hawaiian Monk Seal Entanglements and Marine Debris Accumulation in the Northwestern Hawaiian Islands, 1982_1998. Marine Pollution Bulletin 42:584 589. - Johanos, T. C. and J. D. Baker (editors). 2001. The Hawaiian monk seal in the Northwestern Hawaiian Islands, 1999. U.S. Dep. Commer., NOAA Tech. Memo. NOAA-TM-NMFS-SWFSC-310, 130 p. - Johanos, T. C. and J. D. Baker (editors). 2004. The Hawaiian monk seal in the Northwestern Hawaiian Islands, 2001. U.S. Dep. Commer., NOAA Tech. Memo. NOAA TM NMFS PIFSC 1, 107 p. - Johanos, T. C. and J. D. Baker (editors). 2005. The Hawaiian monk seal in the Northwestern Hawaiian Islands, 2002. U.S. Dep. Commer., NOAA Tech. Memo. NOAA-TM-NMFS-PIFSC-5, 115 p. - Johanos, T. C. and J. D. Baker (editors). 2007 In press. The Hawaiian monk seal in the Northwestern Hawaiian Islands, 2003. U.S. Dep. Commer., NOAA Tech. Memo. NOAA-TM-NMFS-PIFSC-9, 116 p. - Johanos, T. C. and J. D. Baker (editors). In press. The Hawaiian monk seal in the Northwestern Hawaiian Islands, 2004. U.S. Dep. Commer., NOAA Tech. Memo. NOAA-TM-NMFS-PIFSC-XXX, XXX p. - Johanos, T. C. and J. D. Baker (editors). In prep. The Hawaiian monk seal in the Northwestern Hawaiian Islands, 2005. U.S. Dep. Commer., NOAA Tech. Memo. NOAA-TM-NMFS-PIFSC-XXX, XXX p. - Johanos, T. C. and J. D. Baker (editors). In prep. The Hawaiian monk seal in the Northwestern Hawaiian Islands, 2006. U.S. Dep. Commer., NOAA Tech. Memo. NOAA-TM-NMFS-PIFSC-XXX, XXX p. - Johnson, A. M., and E. Kridler. 1983. Interisland movement of Hawaiian monk seals. 'Elepaio 44(5):43-45. - Kawamoto, K. E. 1995. Northwestern Hawaiian Islands bottomfish fishery, 1994. Admin. Rep. H-95-07. Southwest Fisheries Science Center, National Marine Fisheries Service, 2570 Dole St., Honolulu, HI 96822-2396. 26 pp. - Kenyon, K. W. 1972. Man versus the monk seal. J. Mammal. 53(4):687-696. - Kretzmann, M. B., W. G. Gilmartin, A. Meyer, G. P. Zegers, S. R. Fain, B. F. Taylor, and D. P. Costa. 1997. Low genetic variability in the Hawaiian monk seal. Conserv. Biol. 11(2):482-490. - Kretzmann, M. B., N. J. Gemmell, and A. Meyer. 2001. Microsatellite analysis of population structure in the endangered Hawaiian monk seal. Conserv. Biol. 15(2):457-466. - Littnan, C. L., B. S. Stewart, P. K. Yochem, and R. Braun. 2006. Survey for selected pathogens and evaluation of disease risk factors for endangered Hawaiian monk seals in the main Hawaiian Islands. EcoHealth 4. - Goodman-Lowe, G. D. 1998. Diet of the Hawaiian monk seal (*Monachus schauinslandi*) from the Northwestern Hawaiian islands during 1991 to 1994. Marine Biology 132:535-546. - National Marine Fisheries Service. 2002. Biological Opinion for the Management of the Bottomfish and Seamount Groundfish Fisheries in the Western Pacific Region According to the Fishery Management Plan for the - Bottomfish and Seamount Groundfish Fisheries of the Western Pacific Region. - Nitta, E. T., and J. R. Henderson. 1993. A review of interactions between Hawaii's fisheries and protected species. Mar. Fish. Rev. 55(2):83-92. - Otis, D. L., K. P. Burnham, G. C. White, and D. R. Anderson. 1978. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62:1-135. - Parrish, F. A., M. P. Craig, T. J. Ragen, G. J. Marshall, and B. M. Buhleier. 2000. Identifying diurnal foraging habitat of endangered Hawaiian monk seals using a seal-mounted video camera. Mar. Mamm. Sci. 16:392-412. - Polovina, J. J., G. T. Mitchum, N. E. Graham, M. P. Craig, E. E. DeMartini, and E. N. Flint. 1994. Physical and biological consequences of a climate event in the central North Pacific. Fish. Ocean. 3:15-21. - Pooley, S. G., and K. E. . 1998. Annual report of the 1995-97 western Pacific lobster fishery. Admin. Rep. H-98-09. Southwest Fisheries Science Center, National Marine Fisheries Service, 2570 Dole St., Honolulu, HI 96822-2396. 34 pp. - Ragen, T. J. 1993. Status of the Hawaiian monk seal in 1992. Admin. Rep. H-93-05. Southwest Fisheries Science Center, National Marine Fisheries Service, 2570 Dole St., Honolulu, HI 96822-2396. 79 pp. - Ragen, T.J. 1999. Human activities affecting the population trends of the Hawaiian monk seal. Pages 183-194 *in* J.A. Musick, ed. Life in the slow lane: Ecology and conservation of long-lived marine animals. American Fisheries Society Symposium 23, American Fisheries Society, Bethesda, MD. - Rexstad, E. A., and K. P. Burnham. 1991. User's manual for interactive Program CAPTURE. Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Fort Collins, CO. 29 pp. - Rice, D. W. 1960. Population dynamics of the Hawaiian monk seal. J. Mammal. 41:376-385. - Stewart B. S., G. A. Antonelis, J. D. Baker, and P.Y.Yochem. 2006. Foraging biogeography of the Hawaiian monk seal in the Northwestern Hawaiian Islands. Atoll Res Bull 543:131-145. - U.S. Department of Commerce and Department of the Interior. 2006. Northwestern Hawaiian Islands Marine National Monument. Federal Register 71:51,134-51,142. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. - Wade, P. R. 1998. Calculating limits to the allowable human-caused mortality of cetaceans and pinnipeds. Marine Mammal Science 14:1-37. - Wetmore, A. 1925. Bird life among lava rock and coral sand. The Natl. Geograp. Mag. 48:77-108. - White, G. C., D. R. Anderson, K. P. Burnham, and L. Otis. 1982. Capture-recapture and removal methods for sampling closed populations. Los Alamos National Laboratory, Los Alamos, New Mexico. - Yochem, P. K., R. C. Braun, B. Ryon, J. D. Baker, and G. A. Antonelis. 2004. Contingency plan for Hawaiian monk seal Unusual Mortality Events. NOAA-TM-NMFS-PIFSC-2, 27 p. # DALL'S PORPOISE (*Phocoenoides dalli*): California/Oregon/Washington Stock ## STOCK DEFINITION AND GEOGRAPHIC RANGE Dall's porpoise are endemic to temperate waters of the North Pacific Ocean. Off the U.S. west coast, they are commonly seen in shelf, slope and offshore waters Morejohn 1979). (Figure 1; Sighting patterns from aerial and shipboard surveys conducted in California, Oregon and Washington at different times (Green et al. 1992, 1993; Mangels and Gerrodette 1994; Barlow 1995; Forney et al. 1995) suggest that north-south movement between these states occurs as oceanographic conditions change, both on seasonal and interannual time scales. The southern end of this population's range is not well-documented, but they are commonly seen off Southern California in winter, and during cold-water periods they probably range into Mexican waters off northern Baja California. The stock structure of eastern North Pacific Dall's porpoise is not known, but based on patterns of stock differentiation in the western North Pacific, where they have been more intensively studied, it is expected that separate stocks will emerge when data become available (Perrin and Brownell 1994). Although Dall's porpoise are not restricted to U.S. territorial waters, there are no cooperative management agreements with Mexico or Canada for fisheries which may take this species (e.g. **Figure 1.**
Dall's porpoise sightings based on aerial and shipboard surveys off California, Oregon, and Washington, 1991-2005 (see Appendix 2 for data sources and information on timing and location of survey effort). Dashed line represents the U.S. EEZ, thin lines represent completed transect effort of all surveys combined. Key: ● = summer/autumn shipbased sightings; ■ = winter/spring aerial-based sightings. gillnet fisheries). For the Marine Mammal Protection Act (MMPA) stock assessment reports, Dall's porpoises within the Pacific U.S. Exclusive Economic Zone are divided into two discrete, non-contiguous areas: 1) waters off California, Oregon and Washington (this report), and 2) Alaskan waters. #### POPULATION SIZE Shipboard surveys are expected to be more reliable for this species than aerial surveys because of the large, unknown fraction of diving animals missed from the air (Forney 1994). Two summer/fall shipboard surveys were conducted within 300 nmi of the coasts of California Oregon and Washington in 2001 (Barlow 2003) and 2005 (Forney 2007). The distribution of Dall's porpoise throughout this region is highly variable between years and appears to be affected by oceanographic conditions (Forney 1997; Forney and Barlow 1998). Because animals may spend time outside the U.S. Exclusive Economic Zone as oceanographic conditions change, a multi-year average abundance estimate is the most appropriate for management within U.S. waters. The most recent estimate of Dall's porpoise abundance is the geometric mean of estimates from 2001 (Barlow and Forney 2007) and 2005 (Forney 2007) summer/autumn vesselbased line transect surveys of California, Oregon, and Washington waters, or 48,376 (CV = 0.24) animals. The geometric mean abundance estimate for California, Oregon and Washington waters based on 2001 and 2005 ship surveys is 57,549 (CV = 0.34) Dall's porpoise (Barlow 2003; Forney 2007). Additional numbers of Dall's porpoise occur in the inland waters of Washington state, but the most recent abundance estimate obtained in 1996 (900 animals, CV = 0.40) is over 8 years old (Calambokidis et al. 1997) and is not included in the overall estimate of abundance for this stock. #### **Minimum Population Estimate** The log-normal 20th percentile of the 2001-2005 average abundance estimate for the outer coast of California, Oregon and Washington waters is 43,425 39,709 Dall's porpoise. #### **Current Population Trend** No information is available regarding trends in abundance of Dall's porpoise in California, Oregon and Washington. Their distribution and abundance in this region varies considerably at both seasonal and interannual time scales as oceanographic conditions vary (Forney 1997; Forney and Barlow 1998). #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No information on current or maximum net productivity rates is available for Dall's porpoise off the U.S. west coast. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size $(43,425\ 39,709)$ times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.40 (for a species of unknown status and mortality rate CV; Wade and Angliss 1997), resulting in a PBR of $347\ 318$ Dall's porpoise per year. ## **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY**Fishery Information A summary of recent fishery mortality and injury for this stock of Dall's porpoise is given in Table 1. More detailed information on these fisheries is provided in Appendix 1. Mean annual takes for all fisheries for which mortality data are available are 1.4 animals per year. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2000-2004 2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates and the relative rarity of Dall's porpoise entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of this particular species. Mean annual takes in Table 1 are based on 2000 2004 data. This results in an average estimate of 1.2 Dall's porpoise taken annually. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). Low levels of mMortality for of Dall's porpoise have also been documented in the California/Oregon/Washington domestic groundfish trawl fisheries (Perez and Loughlin 1991; Perez 2003). Between 2000 and 2004 with 80%-100% of the fishing effort observed, one Dall's porpoise was reported killed in the at-sea processing portion of the Pacific whiting trawl fishery. In addition, one Dall's porpoise was reported killed in 2004 under the MMAP self-reporting program. Currently, there are no More recent estimates of Dall's porpoise mortality are unavailable from this fishery. **Table 1.** Summary of available information on the incidental mortality and injury of Dall's porpoise (California/ Oregon/Washington Stock) in commercial fisheries that might take this species. All observed entanglements of Dall's porpoise resulted in the death of the animal. Coefficients of variation for mortality estimates are provided in parentheses; n/a = not available. Mean annual takes are based on 2000-2004 2002-2006 data unless noted otherwise for the CA/OR swordfish drift gillnet fishery and 2000-2004 for groundfish and salmon fisheries. MMAP refers to fisher self-reports of incidental takes under the Marine Mammal Authorization Program. | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality | Estimated Annual
Mortality | Mean Annual
Takes (CV in
parentheses) | |--|-----------|-----------------|---------------------------------|-----------------------|-------------------------------|---| | | | 2000 | 22.9% | 0 | 0 | | | | | 2001 | 20.4% | 0 | 0 | | | CA/OR thresher | | 2002 | 22.1% | 0 | 0 | | | shark/swordfish drift | observer | 2003 | 20.2% | 0 | 0 | | | gillnet fishery | observer | 2004 | 20.6% | 0 | 0 | 0 (n/a) | | | | 2005 | 20.9% | 0 | 0 | | | | | 2006 | 18.5% | 0 | 0 | | | | | 2000
2001 | 80.6%
96.2% | 0 | 0 | | | | observer | 2002 | 100% | 1 | 1 (0) | 0.2 (n/a) | | | | 2003 | 100% | 0 | 0 | 0.2 (II/a) | | WA/OR/CA domestic
groundfish trawl | | 2004 | 100% | 0 | 0 | | | | MMAP | 2004 | n/a | 1 | 1 | ≥1 (n/a) | | Puget Sound salmon drift
gillnet (tribal fishery,
Area 5, Strait of Juan de
Fuca) | ММАР | 2000-2004 | n/a | 1 | 1 | ≥0.2 (n/a) | | Minimum total annual take | 1.4 (n/a) | | | | | | #### Other Mortality Two One Dall's porpoise strandings between 2000-2004 2002-2006 showed evidence of a vessel collision as the cause of death. This results in an average annual mortality of 0.4 0.2 Dall's porpoise caused by vessel collisions. #### STATUS OF STOCK The status of Dall's porpoise in California, Oregon and Washington relative to OSP is not known, and there are insufficient data to evaluate potential trends in abundance. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. The average annual human-caused mortality in $\frac{2000}{2004}$ $\frac{2002}{2004}$ $\frac{2002}{2006}$ (fishery mortality + vessel collisions = $\frac{1.8}{1.6}$ animals) is estimated to be less than the PBR ($\frac{347}{200}$ 318), and therefore they are not classified as a "strategic" stock under the MMPA. The total fishery mortality and serious injury for this stock is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. #### REFERENCES - Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Admin. Rep. LJ 97-11. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California
waters based on 1991 and 1993 ship surveys. U.S. Dep. Commer., NOAA Tech. Memo. NMFS SWFSC 233. 15 pp. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Calambokidis, J., S. Osmek, and J. L. Laake. 1997. Aerial surveys for marine mammals in Washington and British Columbia inside waters. Final Contract Report for Contract 52ABNF-6-00092, available from Cascadia Research Collective, Waterstreet Building 218 ½ West Forth Avenue, Olympia, Washington 98501. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Forney, K. A. 1994. Recent information on the status of odontocetes in Californian waters. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-202. 87 pp. - Forney, K. A. 1997. Patterns of variability and environmental models of relative abundance for California cetaceans. Ph.D. dissertation, Scripps Institution of Oceanography, University of California, San Diego. - Forney, K. A. and J. Barlow. 1998. Seasonal patterns in the abundance and distribution of California cetaceans, 1991-92. Mar. Mamm. Sci. 14:460-489. - Forney, K. A., J. Barlow and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27 p. - Green, G., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, and K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington. Ch. 1. *In*: Oregon and Washington Marine Mammal and Seabird Surveys. OCS Study 91-0093. Final Report prepared for Pacific OCS Region, Minerals Management Service, U.S. Department of the Interior, Los Angeles, California. - Green, G., R. A. Grotefendt, M. A. Smultea, C. E. Bowlby, and R. A. Rowlett. 1993. Delphinid aerial surveys in Oregon and Washington waters. Final Report prepared for NMFS, National Marine Mammal Laboratory, 7600 Sand Point Way, NE, Seattle, Washington, 98115, Contract #50ABNF200058. - Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 pp. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - Mangels, K. F. and Gerrodette, T. 1994. Report of cetacean sightings during a marine mammal survey in the eastern Pacific Ocean and Gulf of California aboard the NOAA ships *McARTHUR* and *DAVID STARR JORDAN* July 28 November 6, 1993. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-SWFSC-211. 88 pp. - Morejohn, G. V. 1979. The natural history of Dall's porpoise in the North Pacific Ocean. *In:* Winn, H. E. and B. L. Olla (eds.), Behavior of Marine Mammals, p. 45-83. Plenum Press, New York London. - Perez, M. A. and T. R. Loughlin. 1991. Incidental catch of marine mammals by foreign and joint venture trawl vessels in the U.S. EEZ of the North Pacific, 1973-88. U.S. Dep. Commer. NOAA Tech. Rep. 104. 57 p. - Perez, M. 2003. Compilation of marine mammal incidental take data from the domestic and joint venture groundfish fisheries in the U.S. EEZ of the North Pacific, 1989-2001. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-138. 145 pp. - Perrin, W. F. and R. L. Brownell, Jr. 1994. A brief review of stock identity in small marine cetaceans in relation to assessment of driftnet mortality in the North Pacific. Rep. Int. Whal. Commn. Special Issue 15:393-401. - Sosa-Nishizaki, O., R. De la Rosa Pacheco, R. Castro Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. # PACIFIC WHITE-SIDED DOLPHIN (*Lagenorhynchus obliquidens*): California/Oregon/Washington, Northern and Southern Stocks #### STOCK DEFINITION AND GEOGRAPHIC RANGE Pacific white-sided dolphins are endemic to temperate waters of the North Pacific Ocean, and are common both on the high seas and along the continental margins. Off the U.S. west coast. Pacific whitesided dolphins have been seen primarily in shelf and slope waters (Figure 1). Sighting patterns from recent aerial and shipboard surveys conducted in California, Oregon and Washington at different times of the year (Green et al. 1992; 1993; Barlow 1995; Forney et al. 1995) suggest seasonal north-south movements, with animals found primarily off California during the colder water months and shifting northward into Oregon and Washington as water temperatures increase in late spring and summer (Green et al. 1992; Forney 1994). Stock structure throughout poorly North Pacific is the based understood, but morphological evidence, two forms are known to occur off the California coast (Walker et al. 1986; Chivers et al. 1993). Specimens belonging to the northern form were collected from north of about 33°N, (Southern California to Alaska), and southern specimens were obtained from about 36°N southward along the coasts of California and Baja California. Samples of both forms have been collected in the Southern California Bight, but it is unclear whether this indicates sympatry in this region or whether they may occur there at different times (seasonally or interannually). Recent genetic analyses have confirmed the distinctness of animals found off Baja **Figure 1.** Pacific white-sided dolphin sightings based on aerial and shipboard surveys off California, Oregon, and Washington, 1991- 2005 (see Appendix 2 for data sources and information on timing and location of survey effort). Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. Key: ● = summer/autumn ship-based sightings; + = winter/spring aerial-based sightings. California from animals occurring in U.S. waters north of Point Conception, California and in the high seas of the North Pacific (Lux et al. 1997). Based on these genetic data, an area of mixing between the two forms appears to be located off Southern California (Lux et al. 1997). Although there is clear evidence that two forms of Pacific white-sided dolphins occur along the U.S. west coast, there are no known differences in color pattern, and it is not currently possible to distinguish animals without genetic or morphometric analyses. Geographic stock boundaries appear dynamic and are poorly understood, and therefore cannot be used to differentiate the two forms. Until means of differentiating the two forms for abundance and mortality estimation are developed, these two stocks must be managed as a single unit; however, this is an undesirable management situation. Furthermore, Pacific white-sided dolphins are not restricted to U.S. territorial waters, but cooperative management agreements with Mexico exist only for the tuna purse seine fishery and not for other fisheries which may take this species (e.g. gillnet fisheries).
Additional means of differentiating the two types must be found, and cooperative management with Mexico is particularly important for this species, given the apparently dynamic nature of geographical stock boundaries. Until these goals are accomplished, the management stock includes animals of both forms. For the Marine Mammal Protection Act (MMPA) stock assessment reports, Pacific white-sided dolphins within the Pacific U.S. Exclusive Economic Zone are divided into two discrete, non-contiguous areas: 1) waters off California, Oregon and Washington (this report), and 2) Alaskan waters. #### POPULATION SIZE The most recent estimates of abundance for Pacific white-sided dolphins are based on two summer/autumn shipboard surveys conducted within 300 nmi of the coasts of California, Oregon, and Washington in 2001 and 2005 (Barlow and Forney 2007 $\frac{2003}{2003}$; Forney 2007). The distribution of Pacific white-sided dolphins throughout this region is highly variable, apparently in response to oceanographic changes on both seasonal and interannual time scales (Forney and Barlow 1998). As oceanographic conditions vary, Pacific white-sided dolphins may spend time outside the U.S. Exclusive Economic Zone, and therefore a multi-year average abundance estimate including California, Oregon and Washington is the most appropriate for management within U.S. waters. The 2001-2005 geometric mean abundance estimate for California, Oregon and Washington waters based on the two most recent ship surveys is $\frac{25,233}{20,719}$ (CV = $\frac{0.25}{0.22}$) Pacific white-sided dolphins (Barlow and Forney 2007; Forney 2007). #### **Minimum Population Estimate** The log-normal 20th percentile of the 2001-2005 average abundance estimate is 20,441 17,201 Pacific white-sided dolphins. #### **Current Population Trend** No long-term trends in the abundance of Pacific white-sided dolphins in California, Oregon and Washington are suggested based on historical and recent surveys (Dohl et al. 1980; 1983; Green et al. 1992; 1993; Barlow 1995; Forney et al. 1995, Barlow and Forney 2007 2003, Forney 2007). #### **CURRENT AND MAXIMUM NET PRODUCTIVITY RATES** No information on current or maximum net productivity rates is available for Pacific white-sided dolphins off the U.S. west coast. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size ($\frac{20,441}{17,201}$) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.45 (for a species of unknown status with a mortality rate CV > 0.60 and \leq 0.80; Wade and Angliss 1997), resulting in a PBR of $\frac{184}{155}$ Pacific white-sided dolphins per year. ## **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY** Fishery Information A summary of recent fishery mortality and injury for this stock of Pacific white-sided dolphin is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1. Including mortality from drift gillnet, groundfish trawl, and unknown fisheries, the average annual fishery-related mortality of Pacific white-sided dolphins in 2000 2004 is 5.6 1.4 (CV = 0.72 0.86) animals. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2000 2004 2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates and the relative rarity of Pacific white-sided dolphin entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of this particular species. Mean annual takes in Table 1 are based on 2000-2004 data. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). **Table 1.** Summary of available information on the incidental mortality and injury of Pacific white-sided dolphins (California/ Oregon/Washington Stock) in commercial fisheries that might take this species. All observed entanglements of Pacific white-sided dolphins resulted in the death of the animal. Coefficients of variation for mortality estimates are provided in parentheses; n/a = not available. Mean annual takes are based on $\frac{2000 \ 2004}{2002 \ 2006}$ data unless noted otherwise. | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality | Estimated Annual
Mortality | Mean Annual
Takes (CV in
parentheses) | |---|--------------------------|--|---|-----------------------|---|---| | CA/OR thresher
shark/swordfish drift
gillnet fishery | observer | 2000
2001
2002
2003
2004
2005
2006 | 22.9%
20.4%
22.1%
20.2%
20.6%
20.9%
18.5% | 2
2
1
0
0 | 9 (0.68)
-10(0.71)
5 (0.86)
0
0 | 4.8 (0.72)
1 (0.86) | | WA/OR/CA domestic
groundfish trawl fisheries
(At-sea processing Pacific
whiting fishery only). | observer | 2000
2001
2002
2003
2004 | 80.6%
96.2%
100%
100%
100% | 0
0
0
1 | 0
0
0
1 (n/a) | 0.2 n/a) | | Unknown fishery | stranding | 2000
2001
2002
2003
2004
2005
2006 | | 0
0
0
1
0 | n/a | ≥ 0.6 0.2 | | Minimum total annual take | 5.6 (0.72)
1.4 (0.86) | | | | | | Low levels of mortality for Pacific white-sided dolphins have also been documented in the California/Oregon/ Washington domestic groundfish trawl fisheries (Perez and Loughlin 1991; Perez, in prep;). Between 2000-2004, with 80-100% of the fishing effort observed, one Pacific white-sided dolphin was reported killed in the at-sea processing portion of the Pacific whiting trawl fishery (NMFS,unpublished data). One gillnet Pfishery-related strandings of a Pacific white-sided dolphins in California/Oregon/Washington was recorded between 2000-2004 2002-2006 totaled 3 animals (Table 1). In 2001, two white-sided dolphins stranded in southern Californa within a week, one animal had its flukes cut off, the second animal had yellow nylon line around the caudal peduncle and apparent bullet holes on each side of the head. A third animal stranded in 2004 with net like markings. #### Other removals Additional removals of Pacific white-sided dolphins from the wild have occurred in live-capture fisheries off California. Brownell et al. (1999) estimate a minimum total live capture of 128 Pacific white-sided dolphins between the late 1950s and 1993. The most recent capture was in November 1993, when three animals were taken for public display (Forney 1994). No MMPA permits are currently active for live-captures of Pacific white-sided dolphins. #### STATUS OF STOCK The status of Pacific white-sided dolphins in California, Oregon and Washington relative to OSP is not known, and there is no indication of a trend in abundance for this stock. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. The average annual human-caused mortality in 2000-2004 2006 (5.6 1.4 animals) is estimated to be less than the PBR (184 155), and therefore they are not classified as a "strategic" stock under the MMPA. The total fishery mortality and serious injury for this stock is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. #### REFERENCES - Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Admin. Rep. LJ 97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038, 25p. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. and T. Gerrodette. 1996.
Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. NOAA Tech. Memo. NMFS SWFSC 233. 15 pp. - Barlow, J., K. A. Forney, P. S. Hill, R. L. Brownell, Jr., J. V. Carretta, D. P. DeMaster, F. Julian, M. S. Lowry, T. Ragen, and R. R. Reeves. 1997. U.S. Pacific Marine Mammal Stock Assessments: 1996. U.S. Dep. Commer., NOAA Tech. Memo. NMFS SWFSC 248. 223 pp. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Brownell, R. L., Jr., W. A. Walker and K. A. Forney. 1999. Pacific white-sided dolphin, *Lagenorhynchus obliquidens* Gill, 1865. Pages 57-84 *In:* Ridgway, S. H. and R. Harrison (eds.), Handbook of Marine Mammals, Vol. 6. Academic Press, San Diego. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries - Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USAl. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Chivers, S. J., K. M. Peltier, W. T. Norman, P. A. Akin, and J. Heyning. 1993. Population structure of cetaceans in California coastal waters. Paper SOCCS9 presented at the Status of California Cetacean Stocks Workshop, held in La Jolla, California, March 31-April 2, 1993. 49p. - Dohl, T. P., R. C. Guess, M. L. Duman, and R. C. Helm. 1983. Cetaceans of central and northern California, 1980-1983: Status, abundance and distribution. OCS Study MMS 84-0045. Minerals Management Service Contract # 14-12-0001-29090. 284p. - Dohl, T. P., K. S. Norris, R. C. Guess, J. D. Bryant, and M. W. Honig. 1980. Summary of marine mammal and seabird surveys of the Southern California Bight area, 1975-1978. Part II. Cetacea of the Southern California Bight. Final Report to the Bureau of Land Management, NTIS Rep. No. PB81248189. 414p. - Forney, K. A. 1994. Recent information on the status of odontocetes in Californian waters. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-202. 87 pp. - Forney, K. A. 1997. Patterns of variability and environmental models of relative abundance for California cetaceans. Ph.D. dissertation, Scripps Institution of Oceanography, University of California, San Diego. - Forney, K. A. and J. Barlow. 1998. Seasonal patterns in the abundance and distribution of California cetaceans, 1991-92. Mar. Mamm. Sci. 14:460-489. - Forney, K. A., J. Barlow and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27p. - Green, G., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, and K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington. Ch. 1. In: Oregon and Washington Marine Mammal and Seabird Surveys. OCS Study 91-0093. Final Report prepared for Pacific OCS Region, Minerals Management Service, U.S. Department of the Interior, Los Angeles, California. - Green, G., R. A. Grotefendt, M. A. Smultea, C. E. Bowlby, and R. A. Rowlett. 1993. Delphinid aerial surveys in Oregon and Washington waters. Final Report prepared for NMFS, National Marine Mammal Laboratory, 7600 Sand Point Way, NE, Seattle, Washington, 98115, Contract #50ABNF200058. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142. 276 pp. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - Lux, C. A., A. S. Costa, and A. E. Dizon. 1997. Mitochondrial DNA population structure of the Pacific white-sided dolphin. Rep. Int. Whaling. Commn. 47:645-652. - Perez, M. A. and T. R. Loughlin. 1991. Incidental catch of marine mammals by foreign and joint venture trawl vessels in the U.S. EEZ of the North Pacific, 1973-88. NOAA Tech. Rep. NMFS 104. 57 pp. - Perez, M. A. (in prep). Summary of marine mammal incidental catch data for domestic and joint venture groundfish fisheries in the U.S. EEZ of the North Pacific, 1989-2001. NOAA Tech. Memo. - Sosa-Nishizaki, O., R. De la Rosa Pacheco, R. Castro Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. - Walker, W. A., S. Leatherwood, K. R. Goodrich, W. F. Perrin and R. K. Stroud. 1986. Geographical variation and biology of the Pacific white-sided dolphin, *Lagenorhynchus obliquidens*, in the north-eastern Pacific. *In:* Bryden, M. M. and R. Harrison (eds.), Research on Dolphins, p. 441-465. Clarendon Press, Oxford. ### RISSO'S DOLPHIN (Grampus griseus): California/Oregon/Washington Stock #### STOCK DEFINITION AND GEOGRAPHIC RANGE Risso's dolphins are distributed world-wide in tropical and warm-temperate waters. the U.S. West coast, Risso's dolphins are commonly seen on the shelf in the Southern California Bight and in slope and offshore waters of California, Oregon and Washington. Based on sighting patterns from recent aerial and shipboard surveys conducted in these three states during different seasons (Figure 1), animals found off California during the colder water months are thought to shift northward Oregon into Washington as water temperatures increase in late spring and summer (Green et al. 1992). The southern end of this population's range is not well-documented, but previous surveys have shown a conspicuous 500 nmi distributional gap between these animals and Risso's dolphins sighted south of Baja California and in the Gulf of California (Mangels and Gerrodette 1994). Thus this population appears distinct from animals found in the eastern tropical Pacific and the Gulf of California. Although Risso's dolphins are not restricted to U.S. waters, cooperative management agreements with Mexico exist only for the tuna purse seine fishery and not for other fisheries which may take this species (e.g. gillnet fisheries). For the Marine Mammal Protection Act (MMPA) stock assessment reports, Risso's dolphins within the Pacific U.S. Exclusive Economic Zone are divided into two **Figure 1.** Risso's dolphin sightings based on aerial and shipboard surveys off California, Oregon, and Washington, 1991-2005 (see Appendix 2 for data sources and information on timing and location of survey effort). Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. Key: ● = summer/autumn ship-based sightings; + = winter/spring aerial-based sightings. discrete, non-contiguous areas: 1) waters off California, Oregon and Washington (this report), and 2) Hawaiian waters. #### POPULATION SIZE The previous best estimates of abundance for Risso's dolphins were based on three summer/autumn shipboard surveys conducted within 300 nmi of the coasts California in 1991 and 1993 (Barlow and Gerrodette 1996) and California, Oregon, and Washington in 1996 (Barlow 1997). More recently, Current estimates of population size are derived from two shipboard surveys within 300 nmi of the coasts of California, Oregon, and Washington were conducted in summer/autumn of 2001 (Barlow, and Forney 2007 2003) and 2005 (Forney, 2007). The distribution of Risso's dolphins throughout this region is highly variable, apparently in response to oceanographic changes on both seasonal and interannual time scales
(Forney and Barlow 1998). As oceanographic conditions vary, Risso's dolphins may spend time outside the U.S. Exclusive Economic Zone, and therefore a multi-year average abundance estimate is the most appropriate for management within U.S. waters. The 2001-2005 geometric mean abundance estimate for California, Oregon and Washington waters based on the two most recent ship surveys is $\frac{12,093}{11,621}$ (CV = $\frac{0.24}{0.17}$) Risso's dolphins (Barlow and Forney 2007 $\frac{2003}{0.000}$, Forney, 2007). #### **Minimum Population Estimate** The log-normal 20th percentile of the 2001-2005 weighted average geometric mean abundance estimate is 9,947 10,054 Risso's dolphins. #### **Current Population Trend** The pooled abundance estimate from the most recent two surveys of California, Oregon, and Washington waters is 12,093 (CV=0.24), which is not significantly different from the estimate of 16,066 (0.28) from pooled 1996 2001 surveys (Barlow 2003). Barlow and Forney (2007) report abundance estimates ranging from approximately 5,000 to 11,000 animals in California waters for five separate surveys conducted between 1991 and 2005, with no apparent trend in abundance. Inter-annual variability in the distribution of Risso's dolphin within the ship survey study area is likely responsible for the differences in estimated abundance between surveys. Currently, there is no evidence of a trend in abundance for this stock. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No information on current or maximum net productivity rates is available for this stock. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size ($9.947 \ 10,054$) <u>times</u> one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$ of 4%) <u>times</u> a recovery factor of 0.40 (for a species of unknown status with a mortality rate CV >0.80; Wade and Angliss 1997), resulting in a PBR of 80 Risso's dolphins per year. # **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY**Fishery Information A summary of recent fishery mortality and injury for this stock of Risso's dolphin is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2000-2004 2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates and the relative rarity of Risso's dolphin entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of this particular species. Additional mortality and injury information from the former California shallow set longline fishery and unknown fishery-related strandings are included in Table 1. Mean annual takes in Table 1 are based on 2000-2004 2002-2006 data. This results in an average estimate 6.6 4.9 (CV = 1.02 2.50) Risso's dolphins taken annually. **Table 1.** Summary of available information on the incidental mortality and injury of Risso's dolphin (California/ Oregon/Washington Stock) in commercial fisheries that might take this species. All observed entanglements of Risso's dolphins resulted in the death of the animal. Coefficients of variation for mortality estimates are provided in parentheses; n/a = not available. Mean annual takes are based on $\frac{2000-2004}{2002-2006}$ data unless noted otherwise. | Fishery Name Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality | Estimated Annual
Mortality
(CV) | Mean Annual
Takes (CV) | |------------------------|---------|---------------------------------|-----------------------|---------------------------------------|---------------------------| |------------------------|---------|---------------------------------|-----------------------|---------------------------------------|---------------------------| | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality | Estimated Annual
Mortality
(CV) | Mean Annual
Takes (CV) | |--|--------------------------|---|---|---|---------------------------------------|-----------------------------------| | CA/OR thresher
shark/swordfish drift gillnet
fishery | observer | 2000
2001
2002
2003
2004
2005
2006 | 22.9%
20.4%
22.1%
20.2%
20.6%
20.9%
18.5% | 2
0
0
4
0 | 9 (0.71)
0
20 (0.50)
0
0 | 5.8 (1.02)
4 (0.50) | | CA shallow set longline
fishery | observer | 2001
2002
2003
2004
No fishery
in 2005 | n/a | 1 animal
released
injured in
2003, hook
not removed | n/a | 0.25 (n/a) | | CA deep set longline fishery | observer | 2006 | 100% | 0 | O | 0 | | Market squid purse seine | observer | 2004-2006 | <10% | 0 | 0 | 0 | | Unknown fishery | Stranding | 2002
2003 | | 2
1 | n/a
n/a | 0.6 (n/a) | | Minimum total annual takes | 6.6 (1.02)
4.9 (0.50) | | | | | | Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). Additional mortality of unknown extent has been documented for Risso's dolphins in the squid purse seine fishery off Southern California (Heyning et al. 1994). This mortality probably represented animals killed intentionally to protect catch or gear, rather than incidental mortality, and such intentional takes are now illegal under the 1994 Amendment to the MMPA. This fishery has expanded markedly since 1992 (California Department of Fish and Game, unpubl. data). In addition to mortalities observed in the drift gillnet fishery, there were three fishery-related strandings of Risso's dolphin during 2000 2004 2002-2006. Bullets or bullet fragments were removed from two of the three animals while the third animal showed evidence of gunshot wounds. Two animals had recently been feeding on squid. The timing, circumstances and location of the strandings suggests that the squid purse seine fishery may have been responsible for the mortalities. An observer program in the squid purse seine fishery was initiated in 2004 and a total of 193 sets have been observed through 2006 without a Risso's dolphin interaction. Observer coverage in this fishery has been less than 10% of all fishing effort. #### STATUS OF STOCK The status of Risso's dolphins off California, Oregon and Washington relative to OSP is not known, and there are insufficient data to evaluate potential trends in abundance. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. Over the last 5-year period (2000-20042002-2006), the average annual human-caused mortality (6.6 4.9 animals) is estimated to be less than the PBR (80), and therefore they are not classified as a "strategic" stock under the MMPA. The total fishery mortality and serious injury for this stock is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. #### REFERENCES - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Admin. Rep. LJ 97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J., K. A. Forney, P. S. Hill, R. L. Brownell, Jr., J. V. Carretta, D. P. DeMaster, F. Julian, M. S. Lowry, T. Ragen, and R. R. Reeves. 1997. U.S. Pacific Marine Mammal Stock Assessments: 1996. U.S. Dep. Commer., NOAA Tech. Memo. NMFS SWFSC 248. 223p. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. NOAA Tech. Memo. NMFS SWFSC 233. 15 pp. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon, and Washington based on a 1996 ship survey and
comparisons of closing and passing modes. Administrative Report LJ 97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 25p. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-xx, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Forney, K. A. and J. Barlow. 1998. Seasonal patterns in the abundance and distribution of California cetaceans, 1991-92. Mar. Mamm. Sci. 14:460-489. - Forney, K. A., J. Barlow and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27 p. - Green, G., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, and K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington. Ch. 1. In: Oregon and Washington Marine Mammal and Seabird Surveys. OCS Study 91-0093. Final Report prepared for Pacific OCS Region, Minerals Management Service, U.S. Department of the Interior, Los Angeles, California. - Green, G., R. A. Grotefendt, M. A. Smultea, C. E. Bowlby, and R. A. Rowlett. 1993. Delphinid aerial surveys in Oregon and Washington waters. Final Report prepared for NMFS, National Marine Mammal Laboratory, 7600 Sand Point Way, NE, Seattle, Washington, 98115, Contract #50ABNF200058. - Heyning, J. E., T. D. Lewis and C. D. Woodhouse. 1994. A note on odontocete mortality from fishing gear entanglements off Southern California. Rep. Int. Whal. Commn. Special Issue 15:439-442. - Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - Mangels, K. F. and Gerrodette, T. 1994. Report of cetacean sightings during a marine mammal survey in the eastern Pacific Ocean and Gulf of California aboard the NOAA ships *McARTHUR* and *DAVID STARR JORDAN* July 28 November 6, 1993. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-211. 88 pp. - Shane, S. 1994. Occurrence and habitat use of marine mammals at Santa Catalina Island, California from 1983-91. Bull. Southern California Acad. Sci. 93:13-29. - Sosa-Nishizaki, O., R. De la Rosa Pacheco, R. Castro Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commerce, NOAA Tech. Memo. NMFS-OPR-12. 93 pp. # **BOTTLENOSE DOLPHIN** (*Tursiops truncatus*): California Coastal Stock #### STOCK DEFINITION AND GEOGRAPHIC RANGE Bottlenose dolphins are distributed worldwide in tropical and warm-temperate waters. In many regions, including California, separate coastal and offshore populations are known (Walker 1981; Ross and Cockcroft 1990; Van Waerebeek et al. 1990). Based on nuclear and mtDNA analyses, Lowther (2006) identified 5 haplotypes from 29 coastal animals and 25 haplotypes from 40 offshore animals from the U.S. west coast. There were no shared haplotypes between coastal and offshore animals and significant genetic differentiation between the two ecotypes was evident. California coastal bottlenose dolphins are found within about one kilometer of shore (Figure 1; Hansen, 1990; Carretta et al. 1998; Defran and Weller 1999) primarily from Point Conception south into Mexican waters, at least as far south as San Quintin, Mexico. In southern California, animals are found within 500 m of the shoreline 99% of the time and within 250 m 90% of the time (Hanson and Defran 1993). Oceanographic events appear to influence the distribution of animals along the coasts of California and Baja California, Mexico, as indicated by a change in residency patterns along Southern California and a northward range extension into central California after the 1982-83 El Niño (Hansen and Defran 1990; Wells et al. 1990). Since the 1982-83 El Niño, which increased water temperatures off California, they have been consistently sighted in central California as far north as San Francisco. Photo-identification studies have documented north-south movements of coastal bottlenose dolphins (Hansen 1990; **Figure 1.** Approximate range (in bold) of California coastal bottlenose dolphins based on aerial surveys along the coast of California from 1990-2000. This population of bottlenose dolphins is found within about 1 km of shore. Defran et al. 1999), and monthly counts based on surveys between the U.S./Mexican border and Point Conception are variable (Carretta et al. 1998), indicating that animals are moving into and out of this area. There is little site fidelity of coastal bottlenose dolphins along the California coast; over 80% of the dolphins identified in Santa Barbara, Monterey, and Ensenada have also been identified off San Diego (Defran et al. 1999, Feinholz 1996, Defran, unpublished data). Although coastal bottlenose dolphins are not restricted to U.S. waters, cooperative management agreements with Mexico exist only for the tuna purse seine fishery and not for other fisheries which may take this species. Therefore, the management stock includes only animals found within U.S. waters. For the Marine Mammal Protection Act (MMPA) stock assessment reports, bottlenose dolphins within the Pacific U.S. Exclusive Economic Zone are divided into three stocks: 1) California coastal stock (this report), 2) California, Oregon and Washington offshore stock, and 3) Hawaiian stock. #### POPULATION SIZE Based on photographic mark-recapture surveys conducted along the San Diego coast in 2004 and 2005, the most recent estimate of population size is 323 dolphins (CV = 0.13, 95% CI 259-430; Dudzik et al. 2006). This estimate does not reflect that approximately 35% of dolphins encountered lack identifiable dorsal fin marks (Defran and Weller 1999). If 35% of all animals lack distinguishing marks, then the true population size would be closer to 450-500 animals. Comparing the most recent population size estimate with those obtained from 1987-89 (354 dolphins, 95% CI 330 – 390) and 1996-98 (356 dolphins, 95% CI 306 – 437; Dudzik 1999) suggests that the population size has been stable for approximately 20 years. Older estimates of population size for this stock range from 234 (95% CI 205-263) to 285 (95% CI 265-306) animals for the period 1985-89 (Defran and Weller 1999). Because coastal bottlenose dolphins spend an unknown amount of time in Mexican waters, where they may be subject to mortality in Mexican fisheries, an average abundance estimate for California only is the most appropriate for U.S. management of this stock. #### **Minimum Population Estimate** The minimum number of dolphins photographically identified during 2004-2005 field studies was 164, however, the discovery curve for new animals had not yet reached an asymptote during that study (Dudzik et al. 2006). The minimum population estimate for this stock is therefore taken as the lower
20th percentile of the log-normal distribution of abundance obtained from the photographic mark-recapture estimate (Dudzik et al. 2006), or approximately 290 dolphins. #### **Current Population Trend** Based on a comparison of mark-recapture abundance estimates for the periods 1987-89 (\hat{N} = 354), 1996-98 (\hat{N} = 356), and 2004-05 (\hat{N} = 323), Dudzik et al. (2006) stated that the population size had remained stable over this period. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No information on current or maximum net productivity rates is available for California coastal bottlenose dolphins. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (290) <u>times</u> one half the default maximum net growth rate for cetaceans (½ of 4%) <u>times</u> a recovery factor of 0.50 (for a species of unknown status with no estimated fishery mortality; Wade and Angliss 1997), resulting in a PBR of 2.9 coastal bottlenose dolphins per year. Not all California coastal bottlenose dolphins are present in U.S. waters at any given moment and approximately 18% of the stock's range occurs in Mexican waters. Thus, the PBR is prorated by a minimum factor of 0.82 to account for time that animals spend outside of U.S. waters. Without additional data on the residence times of dolphins in Mexican waters, this factor cannot be improved upon. Because this stock spends some of its time outside the U.S. EEZ, the PBR allocation for U.S. waters is 2.9 x 0.82 = 2.4 dolphins per year. ## **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY** Fishery Information Due to its exclusive use of coastal habitats, this bottlenose dolphin population is susceptible to fishery-related mortality in coastal set net fisheries. A summary of information on fishery mortality and injury for this stock of bottlenose dolphin is shown in Table 1. More detailed information on the set gillnet fishery is provided in Appendix 1. From 1991-94, no bottlenose dolphins were observed taken in this fishery with 10-15% observer coverage (Julian and Beeson 1998). The observer program was discontinued at the end of 1994, when coastal set gillnet fishing was banned within 3 nmi of the southern California coast. In central California, gillnets have been restricted to waters deeper than 30 fathoms (56m) since 1991 in all areas except between Point Sal and Point Arguello. In 2002, a ban on set gill and trammel nets inshore of 60 fathoms from Point Reves to Point Arguello became effective. Because of these closures, the potential for mortality of coastal bottlenose dolphins in the California set gillnet fishery has been greatly reduced. Fisher self-report data and 36 stranding records for 1997-2001 do not include any evidence of fishery interactions for this stock. A renewed observer program began in the halibut set gillnet fishery in 2006. Through late 2007, a total of 260 sets were observed without a cetacean interaction. In 2003, an immature female bottlenose dolphin stranded dead in San Diego, California, with 3.5-inch mesh gillnet wrapped around its tailstock (SWFSC stranding KXD0048). Perforation of the animal's skin suggests the net was on the animal for some time. Mitochondrial DNA analysis showed that the haplotype for this animal matches that of known coastal animals (Lowther 2006; Lowther et al. in prep). The fishery responsible for this mortality is unknown, but the location and type of gillnet found suggests either a set or drift gillnet targeting yellowtail, white seabass, or barracuda. In 2004, a bottlenose dolphin with missing flukes washed ashore near Newport Beach, California, suggestive of an interaction with an entangling net fishery. The haplotype of this animal matched those of known *offshore* bottlenose dolphins (Lowther 2006; Lowther et al., in prep). Coastal gillnet fisheries exist in Mexico and may take animals from this population, but no details are available. **Table 1.** Summary of available information on the incidental mortality and serious injury of bottlenose dolphins (California Coastal Stock) in commercial fisheries that might take this species. A renewed observer program began in the halibut set gillnet fishery in 2006 (12 sets observed total, <1% observer coverage). | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality | Estimated
Annual
Mortality | Mean Annual
Takes (CV in
parentheses) | |---|-----------|---|---|-----------------------|----------------------------------|---| | CA angel shark/ halibut and
other species large mesh (>3.5in)
set gillnet fishery | observer | 2000
2001
2002
2003
2004
2005
2006 | 1.8% [†] 0% 0% 0% 0% 0% 0% 1% | 0 | 0 | 0 | | Unknown fishery | stranding | 2000 2004 One bottlenose dolphin with a coastal stock haplotype stranded entangled in 3.5-inch mesl gillnet in 2003 | | | | ≥0.2 (n/a) | | Minimum total annual takes | | | | | | ≥0.2 (n/a) | In 1999 and 2000, approximately 25% of the Monterey Bay portion of the set gillnet fishery was observed, representing <5% of the overall fishery. There has been no observer program for this fishery since 2000. #### Other removals Seven coastal bottlenose dolphins were collected during the late 1950s in the vicinity of San Diego (Norris and Prescott 1961). Twenty-seven additional bottlenose dolphins were captured off California between 1966 and 1982 (Walker 1975; Reeves and Leatherwood 1984), but based on the locations of capture activities, these animals probably were offshore bottlenose dolphins (Walker 1975). No additional captures of coastal bottlenose dolphins have been documented since 1982, and no live-capture permits are currently active for this species. #### STATUS OF STOCK The status of coastal bottlenose dolphins in California relative to OSP is not known, and there is no evidence of a trend in abundance. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. Coastal bottlenose dolphins are not classified as a "strategic" stock under the MMPA because total annual fishery mortality and serious injury for this stock (≥ 0.2 per year) is less than the PBR (2.4). The total human-caused mortality and serious injury for this stock is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero. #### **Habitat Issues** Pollutant levels, especially DDT residues, found in Southern California coastal bottlenose dolphins have been found to be among the highest of any cetacean examined (O'Shea et al. 1980; Schafer et al. 1984). Although the effects of pollutants on cetaceans are not well understood, they may affect reproduction or make the animals more prone to other mortality factors (Britt and Howard 1983; O'Shea et al. 1999). This population of bottlenose dolphins may also be vulnerable to the effects of morbillivirus outbreaks, which were implicated in the 1987-88 mass mortality of bottlenose dolphins on the U.S. Atlantic coast (Lipscomb et al. 1994). #### **REFERENCES** - Britt, J.O. and E. B. Howard. 1983. Tissue residues of selected environmental contaminants in marine mammals. *In:* Howard, E. B. (ed.), Pathobiology of Marine Mammal Diseases. CRC Press, Boca Raton, Florida. - Carretta, J. V., K. A. Forney and J. L. Laake. 1998. The abundance of southern California coastal bottlenose dolphins estimated from tandem aerial surveys. Mar. Mamm. Sci. 14:655-675. - Defran, R. H. and D. W. Weller. 1999. Occurrence, distribution, site fidelity and school size of bottlenose dolphins (*Tursiops truncatus*) off San Diego, California. Mar. Mamm. Sci. 15:366-380. - Defran, R. H., D. W. Weller, D. L. Kelly, and M. A. Espinosa. 1999. Range characteristics of Pacific coast bottlenose dolphins (*Tursiops truncatus*) in the Southern California Bight. Mar. Mamm. Sci. 15:381-393. - Dudzik, K.J. 1999. Population dynamics of the Pacific coast bottlenose dolphin (*Tursiops truncatus*). M.S. Thesis, San Diego State University, San Diego, California 92182. 63pp. - Dudzik, K.J., K.M. Baker, and D.W. Weller. 2006. Mark-recapture abundance estimate of California coastal stock bottlenose dolphins: February 2004 to April 2005. SWFSC Administrative Report LJ-06-02C, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 15p. - Feinholz, D.M. 1996. Pacific coast bottlenose dolphins (Tursiops truncatus) in Monterey Bay, California. M.S. Thesis, San Jose State University, San Jose, CA. 78p. - Forney, K.A., J. Barlow, M.M. Muto, M. Lowry, J. Baker, G. Cameron, J. Mobley, C. Stinchcomb, and J.V. Carretta. 2000. U.S. Pacific Marine Mammal Stock Assessments: 2000. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-300. 276p. - Hansen, L. J. 1990. California coastal bottlenose dolphins. *In*: S. Leatherwood and R.R. Reeves (eds.), The Bottlenose Dolphin, p. 403-420. Academic Press, Inc., San Diego. - Hansen, L. J. and R. H. Defran. 1990. A comparison of photo-identification studies of California coastal bottlenose dolphins. Rep. Int. Whal. Commn. Special Issue 12:101-104. - Hanson, M.T. and R.H. Defran. 1993. The behavior and feeding ecology of the Pacific coast bottlenose dolphin, *Tursiops truncatus*. Aquatic Mammals 19:127-142. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - Lipscomb, T. P., F. Y. Schulman, D. Moffett, and S. Kennedy. 1994. Morbilliviral disease in Atlantic bottlenose dolphins (*Tursiops truncatus*) from the 1987-88 epizootic. Journal of Wildlife Diseases
30:567-571. - Lowther, J. 2006. Genetic variation of coastal and offshore bottlenose dolphins, *Tursiops truncatus*, in the eastern North Pacific Ocean. M.S. Thesis, University of San Diego, San Diego, California, USA. 126 p. - Lowther, J.L., F.I. Archer, and D.W. Weller. Manuscript in preparation. Genetic variation of coastal and offshore bottlenose dolphins, *Tursiops truncatus*, in the eastern North Pacific Ocean. - O'Shea, T. J., R. L. Brownell, Jr., D. R. Clark, W. A. Walker, M. L. Gray, and T. G. Lamont. 1980. Organochlorine pollutants in small cetaceans from the Pacific and South Atlantic Oceans, November 1968-June 1976. Pesticides Monitoring Journal 14:35-46. - O'Shea, T. J., R. R. Reeves, and A. Kirk Long (eds.). 1999. Marine Mammals and Persistent Ocean Contaminants: Proceedings of the Marine Mammal Commission Workshop, Keystone, Colorado, 12-15 October 1998. Marine Mammal Commission, Bethesda, MD. 150pp. - NMFS, Southwest Fisheries Science Center. P.O. Box 271, La Jolla, CA 92038-0271 - Norris, K. S. and J. H. Prescott. 1961. Observation on Pacific cetaceans of Californian and Mexican waters. University of California Publications in Zoology 63:291-402. University of California Press, Berkeley and Los Angeles. - Reeves, R. R. and S. Leatherwood. 1984. Live-capture fisheries for cetaceans in USA and Canadian waters, 1973-1982. Rep. Int. Whal. Commn. 34:497-507. - Ross, G. J. B. and V. G. Cockcroft. 1990. Comments on Australian bottlenose dolphins and the taxonomic status of *Tursiops aduncus* (Ehrenberg, 1832). *In*: The Bottlenose Dolphin (eds. S. Leatherwood and R. R. Reeves). pp. 101-128. Academic Press, 653pp. - Schafer, H. A., R. W. Gossett, C. F. Ward, and A. M. Westcott. 1984. Chlorinated hydrocarbons in marine mammals. Biennial Report, 1983-84, Southern California Coastal Water Research Project, Long Beach, California. - Van Waerebeek, K., J. C. Reyes, A. J. Read, and J. S. McKinnon. 1990. Preliminary observations of bottlenose dolphins from the Pacific coast of South America. *In*: The Bottlenose Dolphin (eds. S. Leatherwood and R. R. Reeves). pp. 143-154 Academic Press, 653 pp. - Walker, W. A. 1975. Review of the live-capture fishery for smaller cetaceans taken in Southern California waters for public display, 1966-77. J. Fish. Res. Board. Can. 32:1197-1211. - Walker, W. A. 1981. Geographical variation in morphology and biology of bottlenose dolphins (*Tursiops*) in the eastern North Pacific. Admin. Rep. LJ-81-03C. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038, USA. 52p. - Ward, B.G. 1999. Movement patterns and feeding ecology of the Pacific coast bottlenose dolphin (*Tursiops truncatus*). M.S. Thesis, San Diego State University, San Diego, California, 92182. 98pp. - Wells, R. S., L. J. Hansen, A. B. Baldridge, T. P. Dohl, D. L. Kelly and R. H Defran. *In*: S. Leatherwood and R. R. Reeves (eds.), The Bottlenose Dolphin, p. 421-431. Academic Press, Inc., San Diego. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commerce, NOAA Tech. Memo. NMFS-OPR-12. 93 pp. # **BOTTLENOSE DOLPHIN** (*Tursiops truncatus*): California/Oregon/Washington Offshore Stock #### STOCK DEFINITION AND GEOGRAPHIC RANGE Bottlenose dolphins are distributed world-wide in tropical and warm-temperate waters. many regions, including California, separate coastal and offshore populations are known (Walker 1981: Ross and Cockcroft 1990: Van Waerebeek et al. 1990; Lowther 2006; Lowther et al. in prep.). On surveys conducted off California, offshore bottlenose dolphins have been found at distances greater than a few kilometers from the mainland and throughout the Southern California Bight. They have also been documented in offshore waters as far north as about 41°N (Figure 1), and they may range into Oregon and Washington waters during warmwater periods. Sighting records off California and Baja California (Lee 1993; Mangels and Gerrodette 1994) suggest that offshore bottlenose dolphins have continuous distribution in these two regions. Based on aerial surveys conducted during winter/spring 1991-92 (Forney et al. 1995) and shipboard surveys conducted in summer/fall 1991 (Barlow 1995), no seasonality in distribution apparent (Forney and Barlow 1998). Offshore bottlenose dolphins are not restricted to U.S. waters, but cooperative management agreements with Mexico exist only for the tuna purse seine fishery and not for other fisheries which may take this species (e.g. gillnet fisheries). Therefore, **Figure 1.** Offshore bottlenose dolphin sightings based on shipboard surveys off California, Oregon, and Washington, 1991-2005 (see Appendix 2 for data sources and information on timing and location of survey effort). Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. the management stock includes only animals found within U.S. waters. For the Marine Mammal Protection Act (MMPA) stock assessment reports, bottlenose dolphins within the Pacific U.S. Exclusive Economic Zone are divided into three stocks: 1) California coastal stock, 2) California, Oregon and Washington offshore stock (this report), and 3) Hawaiian stock. #### POPULATION SIZE The most recent shipboard surveys conducted within 300 nmi of the coasts of California, Oregon, and Washington were in and 2001 (Barlow and Forney 2007 2003) and 2005 (Forney 2007). Because the distribution of bottlenose dolphins appears to vary interannually and they may spend time outside the U.S. Exclusive Economic Zone, a multi-year average abundance estimate is the most appropriate for management within U.S. waters. The most comprehensive multi-year average abundance is the geometric mean abundance estimate for California, Oregon and Washington waters based on the 2001-2005 ship surveys, or $\frac{3,257}{3,495}$ (CV = 0.43 0.31) offshore bottlenose dolphins (Barlow and Forney 2007 2003, Forney 2007). #### **Minimum Population Estimate** The log-normal 20th percentile of the 2001-2005 average abundance estimate is $\frac{2,295}{2,706}$ offshore bottlenose dolphins. #### **Current Population Trend** No information on trends in abundance of offshore bottlenose dolphins is available. #### **CURRENT AND MAXIMUM NET PRODUCTIVITY RATES** No information on current or maximum net productivity rates is available for this population of offshore bottlenose dolphins. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size ($\frac{2,295}{2,706}$) times one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$ of 4%) times a recovery factor of 0.50 (for a species of unknown status with fishery mortality rate CV < 0.30; Wade and Angliss 1997), resulting in a PBR of $\frac{23}{27}$ offshore bottlenose dolphins per year. ## **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY** Fishery Information A summary of known fishery mortality and injury for this stock of bottlenose dolphin is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2000-2004 2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates and the rarity of bottlenose dolphin entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of this particular species. In 2004, a bottlenose dolphin stranded dead near Newport Beach, California, with its flukes cut off, suggestive of an interaction with an entangling net fishery. The haplotype of this animal matched those of known *offshore* bottlenose dolphins (Lowther 2006, Lowther et al., in prep). Mean annual takes in Table 1 are based on 2000-2004 2002-2006 data. This results in an average estimate of 0.2 offshore bottlenose dolphins taken annually. **Table 1.** Summary of available information on the incidental mortality and injury of bottlenose dolphins (California/ Oregon/Washington Offshore Stock) in commercial fisheries that might take this species. Mean annual takes are based on 2000-2004 data unless noted otherwise. | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality | Estimated Annual
Mortality | Mean Annual
Takes (CV in
parentheses) | |--|------------|--|---|-----------------------|-------------------------------|---| | CA/OR thresher
shark/swordfish drift
gillnet fishery | observer | 2000
2001
2002
2003
2004
2005
2006 | 22.9%
20.4%
22.1%
20.2%
20.6%
20.9%
18.5% | 0
0
0
0 | 0
0
0
0 | 0 | | Unknown fishery | strandings | 2004 | | 1 | ≥1 | ≥0.2 (n/a) | | Minimum total annual tak | ≥0.2 (n/a) | | | | | | Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31
vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). Offshore bottlenose dolphins are often associated with Risso's dolphins and pilot whales, for which mortality has been documented in the squid purse seine fishery off Southern California (Heyning et al. 1994). Based on this association, offshore bottlenose dolphins may also have experienced some mortality in this fishery. However these would probably represent animals killed intentionally to protect catch or gear, rather than incidental kills, and such intentional takes are now illegal under the 1994 Amendment to the MMPA. #### Other removals Twenty-seven bottlenose dolphins were captured off California between 1966 and 1982 (Walker 1975; Reeves and Leatherwood 1984). Based on the locations of capture activities, these animals probably were offshore bottlenose dolphins (Walker 1975). No additional captures of bottlenose dolphins off California have been documented since 1982, and no MMPA live-capture permits are currently active for this species. #### STATUS OF STOCK The status of offshore bottlenose dolphins in California relative to OSP is not known, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. Because average annual fishery takes (0.2/year) are less than the calculated PBR (23/27), offshore bottlenose dolphins are not classified as a "strategic" stock under the MMPA. The total fishery mortality and serious injury for this stock is less than 10% of the PBR and thus can be considered to be insignificant and approaching zero. - Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Admin. Rep. LJ 97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J., K. A. Forney, P. S. Hill, R. L. Brownell, Jr., J. V. Carretta, D. P. DeMaster, F. Julian, M. S. Lowry, T. Ragen, and R. R. Reeves. 1997. U.S. Pacific Marine Mammal Stock Assessments: 1996. U.S. Dep. Commer., NOAA Tech. Memo. NMFS SWFSC 248. 223p. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. U.S. Dep. Commer., NOAA Tech. Memo. NMFS SWFSC 233. 15 pp. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30.Forney, K. A. and J. Barlow. 1998. Seasonal patterns in the abundance and distribution of California cetaceans, 1991-92. Mar. Mamm. Sci. 14:460-489. - Forney, K. A., J. Barlow and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27 p. - Heyning, J. E., T. D. Lewis and C. D. Woodhouse. 1994. A note on odontocete mortality from fishing gear entanglements off Southern California. Rep. Int. Whal. Commn. Special Issue 15:439-442. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Julian, F. 1997. Cetacean mortality in California gill net fisheries: Preliminary estimates for 1996. Paper SC/49/SM02 presented to the International Whaling Commission, September 1997 (unpublished). 13 pp. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - Lee, T. 1993. Summary of cetacean survey data collected between the years of 1974 and 1985. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-181. 184 pp. - Lowther, J. 2006. Genetic variation of coastal and offshore bottlenose dolphins, *Tursiops truncatus*, in the eastern North Pacific Ocean. M.S. Thesis, University of San Diego, San Diego, California, USA. 126 p. - Lowther, J.L., F.I. Archer, and D.W. Weller. Manuscript in preparation. Genetic variation of coastal and offshore bottlenose dolphins, *Tursiops truncatus*, in the eastern North Pacific Ocean. - Mangels, K. F. and Gerrodette, T. 1994. Report of cetacean sightings during a marine mammal survey in the eastern Pacific Ocean and Gulf of California aboard the NOAA ships *McARTHUR* and *DAVID STARR JORDAN* July 28 November 6, 1993. NOAA Tech. Memo. NMFS, NMFS-SWFSC-211. 88 pp. - Reeves, R. R. and S. Leatherwood. 1984. Live-capture fisheries for cetaceans in USA and Canadian waters, 1973-1982. Rep. Int. Whal. Commn 34:497-507. - Ross, G. J. B. and V. G. Cockcroft. 1990. Comments on Australian bottlenose dolphins and the taxonomic status of *Tursiops aduncus* (Ehrenberg, 1832). *In*: The Bottlenose Dolphin (eds. S. Leatherwood and R. R. Reeves). pp. 101-128. Academic Press, 653pp. - Sosa-Nishizaki, O., R. De la Rosa Pacheco, R. Castro Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Van Waerebeek, K., J. C. Reyes, A. J. Read, and J. S. McKinnon. 1990. Preliminary observations of bottlenose dolphins from the Pacific coast of South America. *In*: The Bottlenose Dolphin (eds. S. Leatherwood and R. R. Reeves). pp. 143-154 Academic Press, 653 pp. - Walker, W. A. 1975. Review of the live-capture fishery for smaller cetaceans taken in Southern California waters for public display, 1966-77. J. Fish. Res. Board. Can. 32:1197-1211. - Walker, W. A. 1981. Geographical variation in morphology and biology of bottlenose dolphins (*Tursiops*) in the eastern North Pacific. Admin. Rep. LJ-81-03C. Southwest Fisheries Science Center, National Marine Fisheries Service, La Jolla, CA 92038. 52p. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. # STRIPED DOLPHIN (Stenella coeruleoalba): California/Oregon/Washington Stock #### STOCK DEFINITION AND GEOGRAPHIC RANGE Striped dolphins distributed world-wide in tropical and warm-temperate pelagic waters. recent shipboard surveys extending about 300 nmi offshore of California, they were sighted within about 100-300 nmi from the coast (Figure
1). No sightings have been reported for Oregon Washington waters, but striped dolphins have stranded in both states (Oregon Department of Fish and Wildlife, unpublished data; Washington Department of Fish and Wildlife, unpublished data). Striped dolphins are also commonly found in the central North Pacific, but sampling between this region and California has been insufficient to determine whether the distribution is continuous. Based on sighting records off California and Mexico, striped dolphins appear to have a continuous distribution in offshore waters of these two regions (Perrin et al. 1985; Mangels and Gerrodette 1994). No information on possible in distribution seasonality available, because the California surveys which extended 300 nmi offshore were conducted only during the summer/fall period. Although striped dolphins are not restricted to U.S. waters, cooperative management agreements with Mexico exist only for the tuna purse seine fishery and not for other fisheries which may take this species (e.g. gillnet fisheries). Therefore, the **Figure 1.** Striped dolphin sightings based on aerial and shipboard surveys off California, Oregon, and Washington, 1991-2005 (see Appendix 2 for data sources and information on timing and location of survey effort). Dashed line represents the U.S. EEZ, thin lines indicate the completed transect effort of all surveys combined. management stock includes only animals found within U.S. waters. For the Marine Mammal Protection Act (MMPA) stock assessment reports, striped dolphins within the Pacific U.S. Exclusive Economic Zone are divided into two discrete, non-contiguous areas: 1) waters off California, Oregon and Washington (this report), and 2) waters around Hawaii. #### POPULATION SIZE Abundance is estimated from two summer/fall shipboard surveys conducted within 300 nmi of the coasts of California, Oregon and Washington in 2001 (Barlow and Forney 2007 2003) and 2005 (Forney 2007). The abundance of striped dolphins in this region appears to be variable between years and may be affected by oceanographic conditions, as with other odontocete species (Forney 1997, Forney and Barlow 1998). Because animals may spend time outside the U.S. Exclusive Economic Zone as oceanographic conditions change, a multi-year average abundance estimate is the most appropriate for management within U.S. waters. The 2001-2005 geometric mean abundance estimate for California, Oregon and Washington waters based on the 2001 and 2005 ship surveys is $\frac{23,883}{17,925}$ (CV = 0.44 0.37) striped dolphins (Barlow and Forney 2007 $\frac{2003}{1000}$, Forney 2007). #### **Minimum Population Estimate** The log-normal 20th percentile of the 2001-2005 mean abundance estimate is $\frac{16,737}{13,251}$ striped dolphins. #### **Current Population Trend** Prior to a 1991 shipboard survey (Barlow 1995), striped dolphins were not thought to be common off California (Leatherwood et al. 1982), and two surveys extending approximately 200 nmi offshore of California and Baja California in 1979 and 1980 resulted in only one sighting of three striped dolphins (Smith et al. 1986). Thus it is possible that striped dolphin abundance off California has increased over the last decade (consistent with the observed warming trend for these waters; Roemmich 1992); however, no definitive statement can be made, because statistical estimates of abundance were not obtained for the earlier surveys. Estimates of abundance from surveys conducted in 1991/93, 1996, 2001, and 2005 in California waters were 28,396 (CV = 0.31); 5,489 (0.48); 22,316 (0.65); and 23,883 (0.44) striped dolphin, respectively (Barlow 2003; Forney 2007). Barlow and Forney (2007) reported striped dolphin abundance estimates of 32,370, 14,622, 4,796, 12,570, and 25,561 for the years 1991, 1993, 1996, 2001, and 2005, respectively. Currently, there is no evidence of a trend in abundance for this stock. #### **CURRENT AND MAXIMUM NET PRODUCTIVITY RATES** No information on current or maximum net productivity rates is available for striped dolphins off California. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (16,737 13,251) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.50 (for a species of unknown status with no known fishery mortality; Wade and Angliss 1997), resulting in a PBR of 167 132 striped dolphins per year. # HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Fishery Information A summary of recent fishery mortality and injury for this stock of striped dolphin is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2000 2004 2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). No striped dolphins were observed killed in the most recent five-year period. One striped dolphin was observed killed in the drift gillnet fishery in 1994. After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates and the rarity of striped dolphin entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of this particular species. Mean annual takes in Table 1 are based on 2000-2004 2002-2006 data. This results in an average estimate of zero striped dolphins taken annually. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). **Table 1.** Summary of available information on the incidental mortality and injury of striped dolphins (California/ Oregon/Washington Stock) in commercial fisheries that might take this species. Coefficients of variation for mortality estimates are provided in parentheses. Mean annual takes are based on 2000-2004 2002-2006 data unless noted otherwise. | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality | Estimated Annual
Mortality | Mean
Annual Takes
(CV in
parentheses) | |--|-----------|-----------------------------------|---------------------------------|-----------------------|-------------------------------|--| | CA/OR thresher
shark/swordfish drift
gillnet fishery | observer | 2000-2004
2002-2006 | 20 23%
18–22% | 0 | 0 | 0 | | Minimum total annual take | 0 | | | | | | #### Other mortality One striped dolphin stranded in Oregon in 2006 with "bruising and trauma, possible impact or fisheries interaction" evidence. This results in a human-caused average annual mortality of 0.2 striped dolphins per year for the period 2002-2006. ### STATUS OF STOCK The status of striped dolphins in California relative to OSP is not known, and there are insufficient data to evaluate potential trends in abundance. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. The average annual human-caused mortality in 2000 2004 2002-2006 is zero 0.2. Because recent fishery and human-caused mortality is zero less than 10% of the PBR (132), striped dolphins are not classified as a "strategic" stock under the MMPA, and the total fishery mortality and serious injury for this stock can be considered to be insignificant and approaching zero. - Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Admin. Rep. LJ-97-11. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-233. 15 pp. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001.
Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Forney, K. A. 1997. Patterns of variability and environmental models of relative abundance for California cetaceans. Ph.D. dissertation, Scripps Institution of Oceanography, University of California, San Diego. - Forney, K. A. and J. Barlow. 1998. Seasonal patterns in the abundance and distribution of California cetaceans, 1991-92. Mar. Mamm. Sci. 14:460-489. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27p. - Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - Leatherwood, S., R. R. Reeves, W. F. Perrin, and W. E. Evans. 1982. Whales, dolphins and porpoises of the eastern North Pacific and adjacent Arctic waters. A guide to their identification. NOAA Tech. Rep. NMFS Circular 444, U.S. Dep. Commer., NOAA, NMFS. 245 pp. - Mangels, K. F. and Gerrodette, T. 1994. Report of cetacean sightings during a marine mammal survey in the eastern Pacific Ocean and Gulf of California aboard the NOAA ships *McARTHUR* and *DAVID STARR JORDAN* July 28 November 6, 1993. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-211. 88 pp. - Perrin, W. F., M. D. Scott, G. J. Walker and V. L. Cass. 1985. Review of geographical stocks of tropical dolphins (*Stenella* spp. and *Delphinus delphis*) in the eastern Pacific. NOAA Tech. Rep. NMFS 28. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038. 28p. - Roemmich, D. 1992. Ocean warming and sea level rise along the southwest U.S. coast. Science 257:373-375. - Smith, R. C., P. Dustan, D. Au, K. S. Baker, and E. A. Dunlap. 1986. Distribution of cetaceans and seasurface chlorophyll concentrations in the California Current. Marine Biology 91:385-402. - Sosa-Nishizaki, O., R. De la Rosa Pacheco, R. Castro Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. # SHORT-BEAKED COMMON DOLPHIN (*Delphinus delphis*): California/Oregon/Washington Stock #### STOCK DEFINITION AND GEOGRAPHIC RANGE Short-beaked common dolphins are the most abundant cetacean off California, and are widely distributed between the coast and at least 300 nmi distance from The abundance of this shore. species off California has been shown to change on both seasonal and inter-annual time scales (Dohl et al. 1986; Barlow 1995; Forney et al. 1995). Historically, they were reported primarily south of Pt. Conception (Dohl et al. 1986), but have been commonly sighted as far north as 42°N during 1991-2005 NMFS line-transect vessel surveys (Figure 1). Four strandings of common dolphins (Delphinus sp.) have been reported in Oregon and Washington since 1942 Norberg, pers. comm.), but three of these could not be identified to species. One animal, which stranded in 1983, was identified as a short-beaked common dolphin (J. Hodder, pers. comm.). Significant seasonal shifts in the abundance and distribution of common dolphins have been identified based on winter/spring 1991-92 and summer/fall 1991 surveys (Forney Barlow 1998). distribution is continuous southward into Mexican waters to about 13°N (Perrin et al. 1985: Wade and 1993; Mangels Gerrodette and Gerrodette 1994), and short-beaked common dolphins off California may be an extension of the "northern common dolphin" stock defined for management **Figure 1.** Short-beaked common dolphin sightings based on shipboard surveys off California, Oregon, and Washington, 1991- 2005 (see Appendix 2, for data sources and information on timing and location of survey effort). No *Delphinus* sightings have been made off Washington. Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. of eastern tropical Pacific tuna fisheries (Perrin et al. 1985). However, preliminary data on variation in dorsal fin color patterns suggest there may be multiple stocks in this region, including at least two possible stocks in California (Farley 1995). The less abundant long-beaked common dolphin has only recently been recognized as a different species (Heyning and Perrin 1994; Rosel et al. 1994), and much of the available information has not differentiated between the two types of common dolphin. Although short-beaked common dolphins are not restricted to U.S. waters, cooperative management agreements with Mexico exist only for the tuna purse seine fishery and not for other fisheries which may take this species (e.g. gillnet fisheries). Under the Marine Mammal Protection Act (MMPA), short-beaked common dolphins involved in tuna purse seine fisheries in international waters of the eastern tropical Pacific are managed separately, and they are not included in the assessment reports. For the MMPA stock assessment reports, there is a single Pacific management stock including only animals found within the U.S. Exclusive Economic Zone of California, Oregon and Washington. #### POPULATION SIZE The most recent estimates of abundance estimates are based on two summer/fall shipboard surveys that were conducted within 300 nmi of the coasts of California, Oregon and Washington in 2001 (Barlow and Forney 2007 2003) and 2005 (Forney 2007). The distribution of short-beaked common dolphins throughout this region is highly variable, apparently in response to oceanographic changes on both seasonal and interannual time scales (Heyning and Perrin 1994; Forney 1997; Forney and Barlow 1998). As oceanographic conditions vary, short-beaked common dolphins may spend time outside the U.S. Exclusive Economic Zone, and therefore a multi-year average abundance estimate is the most appropriate for management within U.S. waters. The 2001-2005 geometric mean abundance estimate for California, Oregon and Washington waters based on the two ship surveys is 487,622 392,733 (CV=0.26-0.18) short-beaked common dolphins (Forney 2007). #### **Minimum Population Estimate** The log-normal 20th percentile of the 2001-2005 abundance estimate is 392,687 338,708 short-beaked common dolphins. #### **Current Population Trend** In the past, common dolphin abundance has been shown to increase off California during the warm-water months (Dohl et al. 1986). Surveys conducted during both cold-water and warm-water conditions in 1991 and 1992 (Barlow 1995, Forney et al. 1995) resulted in overall abundance estimates (for both types of common dolphins combined) which were considerably greater than historical estimates (Dohl et al. 1986). The recent combined abundance estimate for the 2001-2005 summer/fall surveys (Forney 2007) is the most precise to date. Environmental models (Forney 1997) and seasonal comparisons (Forney and Barlow 1998) have shown that the abundance of short-beaked common dolphins off California varies with seasonal and interannual changes in oceanographic conditions. An ongoing decline in the abundance of 'northern common dolphins' (including both long-beaked and short-beaked common dolphins) in the eastern tropical Pacific and along
the Pacific coast of Mexico suggests a possible northward shift in the distribution of common dolphins (IATTC 1997) during this period of gradual warming of the waters off California (Roemmich 1992). The majority of this shift would likely be reflected in an increase in shortbeaked common dolphin abundance. Heyning and Perrin (1994) have detected changes in the proportion of short-beaked to long-beaked common dolphins stranding along the California coast, with short-beaked common dolphin stranding more frequently prior to the 1982-83 El Niño (which increased water temperatures off California), and the long-beaked common dolphin more commonly observed for several years afterwards. Thus, it appears that both relative and absolute abundances of these species off California may change with varying oceanographic conditions. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES There are no estimates of current or maximum net productivity rates for short-beaked common dolphins. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (392,687 338,708) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.50 (for a species of unknown status with a mortality rate CV< 0.30; Wade and Angliss 1997), resulting in a PBR of 3,927 3,387 short-beaked common dolphins per year. ## **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY**Fishery Information A summary of recent fishery mortality and injury for short-beaked common dolphins is shown in Table 1. Mean annual takes in Table 1 are based on 2002-2006 data. This results in an average estimate of 77 (CV=0.38) short-beaked common dolphins taken annually. More detailed information on these fisheries is provided in Appendix 1. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2000-2004 2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, common dolphin entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003) Since the initial pinger experiments in 1996, short-beaked common dolphin entanglement rates have remained below pre-pinger levels, even though a time/area closure in 2001 shifted fishing effort south of Point Conception, California, where common dolphin densities are highest. Between 1990 2005, in the region south of Point Conception, there have been 112 short beaked common dolphins entangled in 2,700 sets (4.1 per 100 sets), whereas there were 114 entanglements in 1,946 sets without pingers (5.8 per 100 sets) (NMFS, unpublished data). Mean annual takes in Table 1 are based on 2000 2004 data. This results in an average estimate of 59 (CV = 0.15) short beaked common dolphins taken annually. # Short-Beaked Common Dolphin Entanglement Rates **Figure 2.** Kill Entanglement rates of short-beaked common dolphin per set fished in the California drift gillnet fishery for swordfish and thresher shark, 1990-20052006. Kill Entanglement rates include observations from pingered and unpingered sets. Pingers were not used from 1990-95 and were used experimentally in 1996 and 1997. In 1996, no short-beaked common dolphin were observed killed in 146 pingered sets. For the period 1998-2005 2006, more than 99% of all observed sets utilized pingers. Additional eCommon dolphin mortality has also been reported for in halibut set gillnets in California (Julian and Beeson 1998). ; however, because of a 1994 ban on gillnets in nearshore areas of Southern California, the size of this fishery decreased by about a factor of two (see Appendix 1), and the observer program was discontinued. Approximately 4% and 1.8% of the entire fishery was observed in Monterey Bay in 1999 and 2000, respectively The fishery has been observed only four times since 1994 (in 1999, 2000, 2006, and 2007), at low levels of observer coverage (<10% of fishing effort). and Although no common dolphin were observed taken during these four observation periods, Marine Mammal Authorization Permit (MMAP) fisher self-reports for 2000-2004 indicate that at least two common dolphins (type not specified) were killed (Marine Mammal Authorization Permit Program data) between 2000-2004. Although these reports are considered unreliable (see Appendix 4 of Hill and DeMaster 1998) they represent a minimum mortality for this fishery. The squid purse seine fishery had 193 sets observed from 2004-2006. One short-beaked common dolphin mortality was observed in 2005, with a resulting mortality estimate of 87 (CV=0.98) animals (Carretta and Enriquez 2006). In addition, there was one squid purse seine set in 2006 where 8 unidentified dolphins were encircled. Seven were released alive and the eighth was seriously injured. Six Three unidentified and one short-beaked common dolphin (four not specified) stranded with evidence of fishery interaction (NMFS, Southwest Region, unpublished data) between 2000-2004 2002-2006. It is not known which fisheries were responsible for these deaths. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). **Table 1.** Summary of available information on the incidental mortality and injury of short-beaked common dolphins (California/Oregon/Washington Stock), in commercial fisheries that might take this species. All entanglements resulted in the death of the animal. Coefficients of variation for mortality estimates are provided in parentheses; n/a = not available. Mean annual takes are based on $\frac{2000-2004}{2002-2006}$ data unless noted otherwise. | Fishery Name | Data Type | Year | Percent
Observer
Coverage | Observed
Mortality | Estimated Annual
Mortality | Mean
Annual Takes
(CV in
parentheses) | |--|------------------------------------|--|---|--|--|--| | CA/OR thresher
shark/swordfish drift
gillnet fishery | observer | 2000
2001
2002
2003
2004
2005
2006 |
22.9%
20.4%
22.1%
20.2%
20.6%
20.9%
18.5% | 24
7
7
17
7
12
6 | 105 (0.26)
34 (0.41)
32 (0.46)
84 (0.24)
34 (0.49)
57 (0.30)
32 (0.52) | 58 (0.15)
48 (0.16) | | CA squid purse seine | observer | 2004
2005
2006 | unknown
1.1%
unknown | 0
1
0 | 0
87 (0.98)
0 | 29 (0.98) | | CA angel shark/
halibut and other
species large mesh
(>3.5in) set gillnet
fishery ¹ | MMAP
self-reporting
observer | 2000
2001
2002
2003
2004
2005
2006 | Common dolp n/a n/a | ophins, species nor
ophins, s | t determined 0 0 0 1 n/a n/a | ≥0.2 (n/a) | | Fishery Name | Data Type | Year | Percent
Observer
Coverage | Observed
Mortality | Estimated Annual
Mortality | Mean
Annual Takes
(CV in
parentheses) | |------------------------|------------|------------------------|--|---|-------------------------------|--| | Unknown fishery | strandings | 2000-2004
2002-2006 | common dol
interactions.
net marks and
strandings of
fishery. Thes
fisheries that
not included
counting of f
therefore base
can be attri
program or co | four Three unidentified common and 2 one short-beaked common dolphin stranded with evidence of fishery interactions. Evidence of fishery interactions included net marks and positive metal detector scans. None of the strandings could be linked to a specific commercial fishery. These strandings may have come from observed fisheries that already have bycatch estimates and thus are not included in the annual average to prevent double-counting of fishery mortalities. Mean annual takes are therefore based on stranded animals only if the stranding can be attributed to a fishery lacking an observer program or cases where stranded animals represent the only documented fishery-related deaths in a given year. | | | | Minimum total annual t | takes | | | | | 59 (0.15)
77 (0.38) | ¹The set gillnet fishery was observed from 1991-94 and then only in Monterey Bay during 1999-2000, where 20-25% of the local fishery was observed. There are no estimates of common dolphin mortality in this fishery because of a lack of recent observer effort. Observer coverage in this fishery resumed in 2006 (12 sets observed) and continued into 2007 (248 sets observed). #### **Other Mortality** In the eastern tropical Pacific, 'northern common dolphins' have been incidentally killed in international tuna purse seine fisheries since the late 1950's. Cooperative international management programs have dramatically reduced overall dolphin mortality in these fisheries during the last decade (Joseph 1994). Between 2000-2004, annual fishing mortality of northern common dolphins (potentially including both short-beaked and long-beaked common dolphins) ranged between 54 and 159 animals, with an average of 102 (IATTC, 2006). Although it is unclear whether these animals are part of the same population as short-beaked common dolphins found off California, they are managed separately under a section of the MMPA written specifically for the management of dolphins involved in eastern tropical Pacific tuna fisheries. #### STATUS OF STOCK The status of short-beaked common dolphins in Californian waters relative to OSP is not known. The observed increase in abundance of this species off California probably reflects a distributional shift (Anganuzzi et al. 1993; Barlow 1995; Forney et al. 1995; Forney and Barlow 1998), rather than an overall population increase due to growth. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. The average annual human-caused mortality in 2000-2004 2002-2006 (59 77 animals) is estimated to be less than the PBR (3,9273,387), and therefore they are not classified as a "strategic" stock under the MMPA. The total estimated fishery mortality and injury for short-beaked common dolphins is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. #### REFERENCES Anganuzzi, A. A., S. T. Buckland, and K. L Cattanach. 1993. Relative abundance of dolphins associated with tuna in the eastern tropical Pacific Ocean: analysis of 1991 data. Rep. Int. Whal. Commn 43:459-465. Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14. Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ 97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J., K. A. Forney, P. S. Hill, R. L. Brownell, Jr., J. V. Carretta, D. P. DeMaster, F. Julian, M. S. Lowry, T. Ragen, and R. R. Reeves. 1997. U.S. Pacific Marine Mammal Stock Assessments: 1996. U.S. Dep. Commer., NOAA Tech. Memo. NMFS SWFSC 248. 223p. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. NOAA Technical Memorandum NMFS, NOAA-TM-NMFS-SWFSC-233. - Dohl, T. P., M. L. Bonnell, and R. G. Ford. 1986. Distribution and abundance on common dolphin, *Delphinus delphis*, in the Southern California Bight: A quantitative assessment based upon aerial transect data. Fish. Bull. 84:333-343. - Farley, T. D. 1995. Geographic variation in dorsal fin color of short-beaked common dolphins, *Delphinus delphis*, in the eastern Pacific Ocean. Administrative Report LJ-95-06, Available from National Marine Fisheries Service, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038. - Forney, K. A. 1997. Patterns of variability and environmental models of relative abundance for California cetaceans. Ph.D. Dissertation, Scripps Institution of Oceanography, University of California, San Diego. - Forney, K. A. and J. Barlow. 1998. Seasonal patterns in the abundance and distribution of California cetaceans, 1991-92. Mar. Mamm. Sci. 14:460-489. - Forney, K. A., J. Barlow and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA
Technical Memorandum NMFS-SWFSC-406. 27p. - Heyning, J. E. and W. F. Perrin. 1994. Evidence for two species of common dolphins (Genus *Delphinus*) from the eastern North Pacific. Contr. Nat. Hist. Mus. L.A. County, No. 442. - Hill, P. S. and D. P. DeMaster. 1998. Alaska Marine Mammal Stock Assessments, 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-97. 166pp. - Hodder, J. Oregon Institute of Marine Biology, Charleston, OR, 97420. - Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - IATTC. 1997. Annual Report of the Inter-American Tropical Tuna Commission, 1995, La Jolla, California. - IATTC. 2006. Annual Report of the Inter-American Tropical Tuna Commission, 2004, La Jolla, California. 96p. - Joseph, J. 1994. The tuna-dolphin controversy in the eastern Pacific Ocean: biological, economic and political impacts. Ocean Dev. Int. Law 25:1-30. - Julian, F. 1997. Cetacean mortality in California gill net fisheries: Preliminary estimates for 1996. Paper SC/49/SM02 presented to the International Whaling Commission, 1997 (unpublished). 13 pp. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - Mangels, K. F. and Gerrodette, T. 1994. Report of cetacean sightings during a marine mammal survey in the eastern Pacific Ocean and Gulf of California aboard the NOAA ships *McARTHUR* and *DAVID* STARR JORDAN July 28 - November 6, 1993. NOAA Technical Memorandum NMFS, NOAA-TM-NMFS-SWFSC-211. - NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, CA 92038-027. - NMFS, Southwest Region, 501 West Ocean Blvd, Long Beach, CA 90802_4213. - Norberg, B., NMFS, Northwest Region, 7600 Sand Point Way NE, BIN C15700, Seattle, WA 98115_0070. - Perrin, W. F., M. D. Scott, G. J. Walker and V. L. Cass. Review of geographical stocks of tropical dolphins (*Stenella* spp. and *Delphinus delphis*) in the eastern Pacific. NOAA Technical Report NMFS 28. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038. 28p. - Roemmich, D. 1992. Ocean warming and sea level rise along the southwest U.S. coast. Science 257:373-375. - Rosel, P. E., A. E. Dizon and J. E. Heyning. 1994. Population genetic analysis of two forms of the common dolphin (genus *Delphinus*) utilizing mitochondrial DNA control region sequences. Marine Biology 119:159-167. - Sosa-Nishizaki, O., R. De la Rosa-Pacheco, R. Castro-Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. - Wade, P. R. and T. Gerrodette. 1993. Estimates of cetacean abundance and distribution in the eastern tropical Pacific. Rep. Int. Whal. Commn 43:477-493. ### LONG-BEAKED COMMON DOLPHIN (Delphinus capensis): California Stock #### STOCK DEFINITION AND GEOGRAPHIC RANGE Long-beaked common dolphins have only recently been recognized as a distinct species (Heyning and Perrin 1994; Rosel et al. 1994). Along the U.S. west coast, their distribution overlaps with that of the short-beaked dolphin, common and much information has historical distinguished between these two species. Long-beaked common are commonly found dolphins within about 50 nmi of the coast, from Baja California (including the Gulf of California) northward to about central California (Figure 1). Stranding data and sighting records indicate that the relative abundance of this species off California changes both seasonally and interannually, with highest densities observed during warm water events (Heyning and Perrin 1994). Although long-beaked common dolphins are not restricted to U.S. waters, cooperative management agreements with Mexico exist only for the tuna purse seine fishery and not for other fisheries which may take this species (e.g. gillnet Under the Marine fisheries). Mammal Protection Act (MMPA), long-beaked ("Baja neritic") common dolphins involved in eastern tropical Pacific tuna fisheries are managed separately as part of the 'northern common dolphin' stock (Perrin et al. 1985), and these animals are not **Figure 1.** Long-beaked common dolphin sightings based on shipboard surveys off California, Oregon, and Washington, 1991-2005 (see Appendix 2 for information on timing and location of survey effort). No Delphinus sightings have been made off Washington. Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. included in the assessment reports. For the MMPA stock assessment reports, there is a single Pacific management stock including only animals found within the U.S. Exclusive Economic Zone of California. #### POPULATION SIZE Barlow (2003) reported long beaked common dolphin abundance estimates of 10,799 (CV = 0.76), 86,414 (CV = 0.74), and 306 (CV = 1.02) for 1991-93, 1996, and 2001 surveys, respectively. The most recent abundance estimates are 20,076 (CV = 0.71) and $\frac{1}{15}$ 11,714 (CV = 0.99) long-beaked common dolphin, based on a 2001 and 2005 ship line transect surveys, respectively, of California, Oregon, and Washington waters (Barlow and Forney 2007, Forney 2007). The 2001 estimate of 20,076 (CV = 0.71) is based on a new multiple-covariate line transect analysis (Barlow and Forney 2007) and supercedes the estimate of 306 (CV = 1.02) reported by Barlow (2003). See Appendix 2 for additional information on abundance estimates used in this stock assessment. common dolphins off California appears to be variable on interannual and seasonal time scales (Heyning and Perrin 1994). As oceanographic conditions change, long-beaked common dolphins may move between Mexican and U.S. waters, and therefore a multi-year average abundance estimate is the most appropriate for management within the U.S. waters. The geometric mean abundance estimate for California, Oregon and Washington waters based on two ship surveys conducted in 2001 and 2005 is 1,893—15,335 (CV=0.65 0.56) long-beaked common dolphins (Barlow and Forney 2007 2003, Forney 2007). #### **Minimum Population Estimate** The log-normal 20th percentile of the weighted average abundance estimate is 1,152 9,880 long-beaked common dolphins. #### **Current Population Trend** California waters represent the northern limit for this stock and animals likely move between U.S. and Mexican waters. No information on trends in abundance are available for this stock because of high interannual variability in line-transect abundance estimates. Heyning and Perrin (1994) detected changes in the proportion of short-beaked to long-beaked common dolphins stranding along the California coast, with the short-beaked common dolphin stranding more frequently prior to the 1982-83 El Niño (which increased water temperatures off California), and the long-beaked common dolphin more commonly observed for several years afterwards. Thus, it appears that both relative and absolute abundance of these species off California may change with varying oceanographic conditions. #### **CURRENT AND MAXIMUM NET PRODUCTIVITY RATES** There are no estimates of current or maximum net productivity rates for long-beaked common dolphins. ### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size ($\frac{1,152}{9,880}$) times one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$ of 4%) times a recovery factor of 0.48 (for a species of unknown status with a mortality rate CV >0.30 and <0.60; Wade and Angliss 1997), resulting in a PBR of $\frac{11}{2}$ long-beaked common dolphins per year. ## **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY** Fishery Information A summary of recent fishery mortality and injury for long-beaked common dolphins is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2000-2004 2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, common dolphin entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of this species in the long term. Additional cCommon dolphin mortality has also been reported for in halibut set gillnets in California (Julian and Beeson 1998). However, because of a 1994 ban on gillnets in nearshore areas of Southern California, the size of this fishery decreased by about a factor of two (see Appendix 1), and the observer program was discontinued. Approximately 4% and 1.8% of the entire fishery was observed in Monterey Bay in 1999 and 2000, respectively The fishery has been observed only four times since 1994 (in 1999, 2000, 2006, and 2007), at low levels of observer coverage (<10% of fishing effort). and Although no common dolphin were observed taken during these four observation periods, Marine Mammal Authorization
Permit (MMAP) fisher self-reports for 2000-2004 indicate that at least two common dolphins (type not specified) were killed (Marine Mammal Authorization Permit Program data) between 2000-2004. Although these reports are considered unreliable (see Appendix 4 of Hill and DeMaster 1998) they represent a minimum mortality for this fishery. Sixteen Nineteen common dolphins (six three unidentified common dolphin and ten 16 long-beaked common dolphin) stranded with evidence of fishery interaction (NMFS, Southwest Region, unpublished data) between 2000-2004 2002-2006. Two of the long beaked common dolphin had portions of 'halibut' gillnet around the carcasses and it is not known which fisheries were responsible for the remaining mortalities. All but one of these strandings showed evidence of an interaction with an unknown entangling net fishery (severed flukes, knife cuts, net marks, or net fragments wrapped around the animal). The remaining animal showed evidence of an interaction with an unknown hook and line fishery. Mean annual takes in Table 1 are based on $\frac{2000-2004}{2002-2006}$ data. This results in an average estimate of $\frac{12.5}{16}$ (CV= $\frac{0.70}{0.46}$) long-beaked common dolphins taken annually. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). **Table 1.** Summary of available information on the incidental mortality and injury of long-beaked common dolphins (California Stock) and prorated unidentified common dolphins in commercial fisheries that might take this species. All observed entanglements resulted in the death of the animal. The observer program for the set gillnet fishery was discontinued during 1994 and later resumed in Monterey Bay from 1999-2000. Observations in the set gillnet fishery resumed in 2006 and 2007 (260 total sets observed) and no long-beaked common dolphin were observed taken. Coefficients of variation for mortality estimates are provided in parentheses, when available. Mean annual takes are based on 2000-2004 2002-2006 data unless noted otherwise. n/a = information not available. | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed | Estimated Annual
Mortality | Mean
Annual Takes
(CV in
parentheses) | |---|----------------------------|--|---|---|---|--| | CA/OR thresher
shark/swordfish drift
gillnet fishery | observer | 2000
2001
2002
2003
2004
2005
2006 | 22.9%
20.4%
22.1%
20.2%
20.6%
20.9%
18.5% | 1
0
0
0
3
1 | 4 (1.08)
0
18 (0.79)
0
0
14 (0.57)
5 (1.04) | 4.4 (1.69)
7.4 (0.77) | | CA small mesh drift
gillnet fishery for white
seabass, yellowtail,
barracuda, and tuna | observer | 2000
2001
2002
2003
2004
2005
2006 | not observed
not observed
11.5%
10.4%
17.6%
not observed
not observed | n/a
n/a
0
1
1
n/a
n/a | n/a
n/a
0 (n/a)
9 (0.78)
5 (1.18)
n/a
n/a | 4.7 (0.98) | | CA angel shark/ halibut
and other species large
mesh (>3.5in) set gillnet
fishery ² | MMAP
self-
reporting | 2000
2001
2002
2003
2004
2005
2006 | Common dolphins n/a n/a | 0
0
0
1
n/a
n/a | 0
0
0
1
n/a
n/a | ≥0.2 (n/a) | | | observer | 2006-2007 | <10% | 0 | 0 | O | | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed | Estimated Annual
Mortality | Mean
Annual Takes
(CV in
parentheses) | |--------------|----------------------------|------------------------|---|----------|-------------------------------|--| | Undetermined | strandings | 2000-2004
2002-2006 | Sixteen 19 common dolphins (six three unidentified and ten 16 longbeaked common dolphin) stranded with evidence of fishery interactions. Two long beaked common dolphins stranded with portions of 'halibut' gillnet around animal Evidence of fishery interactions included severed flukes, net fragments, net marks, positive metal detector scans, and knife marks or cuts. Only one of the strandings could be linked to a specific commercial fishery (halibut set gillnet in 2002), which was not observed that year. Other strandings may have come from observed fisheries that already have bycatch estimates and these are not included in the annual average to prevent double-counting of fishery mortalities. Mean annual takes are therefore based on stranded animals only if the stranding can be attributed to a fishery lacking an observer program or cases where stranded animals represent the only documented fishery-related deaths in a given year. | | | ≥ <u>3.2</u> 0.2(n/a) | | | Minimum total annual takes | | | | | | Observer coverage in the small mesh drift gillnet fishery was estimated from logbook records. Logbook effort totaled 192, 134, 191, 201, and 125 sets for 2000 through 2004, respectively. The fishery was not observed in 2000 and 2001 and 2005 and 2006, and aAnnual fishery mortality is calculated based on the three-year average from 2002-2004. #### **Other Mortality** In the eastern tropical Pacific, 'northern common dolphins' have been incidentally killed in international tuna purse seine fisheries since the late 1950's. Cooperative international management programs have dramatically reduced overall dolphin mortality in these fisheries during the last decade (Joseph 1994). Between 2000-2004, annual fishing mortality of northern common dolphins (potentially including both short-beaked and long-beaked common dolphins) ranged between 54 and 159 animals, with an average of 102 (IATTC, 2006). Although it is unclear whether these animals are part of the same population as short long-beaked common dolphins found off California, they are managed separately under a section of the MMPA written specifically for the management of dolphins involved in eastern tropical Pacific tuna fisheries. 'Unusual mortality events' of long-beaked common dolphin due to domoic acid toxicity have been documented by NMFS as recently as 2007 along the California coast. #### STATUS OF STOCK The status of long-beaked common dolphins in California waters relative to OSP is not known, and there are insufficient data to evaluate potential trends in abundance of this species of common dolphin. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. The average annual human-caused mortality from 2000-2004 2002-2006 (12.5 animals) does not exceeds the PBR (41 95), and therefore they are not classified as a "strategic" stock under the MMPA. The average total fishery mortality and injury for long-beaked common dolphins (12.5) exceeds 10% of the PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. #### REFERENCES Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14. ²The set gillnet fishery was observed from 1991-94 and then only in Monterey Bay during 1999-2000, where 20-25% of the local fishery was observed. No estimates of current mortality are available for this fishery because of a lack of recent observer coverage. Observer coverage in this fishery resumed in 2006 (12 sets observed) and continued into 2007 (248 sets observed). - Barlow, J. 1997.
Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ 97 11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J., K. A. Forney, P. S. Hill, R. L. Brownell, Jr., J. V. Carretta, D. P. DeMaster, F. Julian, M. S. Lowry, T. Ragen, and R. R. Reeves. 1997. U.S. Pacific Marine Mammal Stock Assessments: 1996. U.S. Dep. Commer., NOAA Tech. Memo. NMFS SWFSC 248. 223p. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. U.S. Dep. Commer., NOAA Tech. Memo. NMFS SWFSC 233. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Forney, K. A., J. Barlow and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27p. - Heyning, J. E. and W. F. Perrin. 1994. Evidence for two species of common dolphins (Genus *Delphinus*) from the eastern North Pacific. Contr. Nat. Hist. Mus. L.A. County, No. 442. - Hill, P. S. and D. P. DeMaster. 1998. Alaska Marine Mammal Stock Assessments, 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-97. 166 pp. - Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, Xiphias gladius, fisheries of the eastern North Pacific Ocean. In: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, Xiphias gladius. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 pp. - IATTC. 2006. Annual Report of the Inter-American Tropical Tuna Commission, 2004, La Jolla, California. 96p. - Joseph, J. 1994. The tuna-dolphin controversy in the eastern Pacific Ocean: biological, economic and political impacts. Ocean Dev. Int. Law 25:1-30. - Julian, F. 1997. Cetacean mortality in California gill net fisheries: Preliminary estimates for 1996. Paper SC/49/SM02 presented to the International Whaling Commission, 1997 (unpublished). 13 pp. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, CA 92038-027. - NMFS, Southwest Region, 501 West Ocean Blvd, Long Beach, CA 90802_4213. - Perrin, W. F., M. D. Scott, G. J. Walker and V. L. Cass. Review of geographical stocks of tropical dolphins (*Stenella* spp. and *Delphinus delphis*) in the eastern Pacific. NOAA Technical Report NMFS 28. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038. 28p. - Rosel, P. E., A. E. Dizon and J. E. Heyning. 1994. Population genetic analysis of two forms of the common dolphin (genus *Delphinus*) utilizing mitochondrial DNA control region sequences. Marine Biology 119:159-167. - Sosa-Nishizaki, O., R. De la Rosa-Pacheco, R. Castro-Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. # NORTHERN RIGHT-WHALE DOLPHIN (Lissodelphis borealis): California/Oregon/Washington Stock #### STOCK DEFINITION AND GEOGRAPHIC RANGE Northern right-whale dolphins are endemic to temperate waters of the North Pacific Ocean. Off the U.S. west coast, they have been seen primarily in shelf and slope waters (Figure 1), with seasonal movements into the Southern California **Bight** (Leatherwood and Walker 1979; Dohl et al. 1980; 1983; NMFS, unpublished data). Sighting patterns from recent aerial and shipboard surveys conducted in California, Oregon and Washington during different seasons (Green et al. 1992; 1993; Forney et al. 1995; Barlow 1995) suggest seasonal north-south movements, with animals found primarily off California during the colder water months and shifting northward into Oregon Washington as water temperatures increase in late spring and summer (Green et al. 1992; Forney 1994; Forney and Barlow 1998). southern end of this population's range is not well-documented, but during cold-water periods, they probably range into Mexican waters off northern Baja California. Genetic analyses have not found statistically significant differences between northern right-whale dolphins from the U.S. West coast and other areas of the North Pacific (Dizon et al. 1994); however, power analyses indicate that the ability to detect stock differences for this species is poor, given traditional statistical error levels (Dizon et al. 1995). Although northern right-whale dolphins are not restricted to U.S. territorial waters, there are currently no international agreements for cooperative **Figure 1.** Northern right whale dolphin sightings based on aerial and shipboard surveys off California, Oregon, and Washington, 1991-2005 (see Appendix 2 for data sources and information on timing and location of survey effort). Dashed line represents the U.S. EEZ, thin lines indicates completed transect effort of all surveys combined. Key: ● = summer/autumn ship-based sightings; + = winter/spring aerial-based sightings. management. For the Marine Mammal Protection Act (MMPA) stock assessment reports, there is a single management stock including only animals found within the U.S. Exclusive Economic Zone of California, Oregon and Washington. #### POPULATION SIZE The previous best estimates of abundance for northern right-whale dolphins (Barlow et al. 1997) were based on winter/spring 1991-92 aerial surveys (Forney et al. 1995) off California, which were presumed to include northern right-whale dolphins that are found off Oregon and Washington during summer and fall. Two summer/fall shipboard surveys were conducted within 300 nmi of the coasts of California, Oregon and Washington in 2001 (Barlow and Forney 2007 2003) and 2005 (Forney 2007). The distribution of northern right-whale dolphins throughout this region is highly variable, apparently in response to oceanographic changes on both seasonal and interannual time scales (Forney and Barlow 1998). As oceanographic conditions vary, northern right-whale dolphins may spend time outside the U.S. Exclusive Economic Zone, and therefore a multi-year average abundance estimate is the most appropriate for management within U.S. waters. The 2001-2005 geometric mean abundance estimate for California, Oregon and Washington waters based on the two ship surveys is 15,305 12,876 (CV= 0.32-0.30) northern right-whale dolphins (Barlow and Forney 2007 2003, Forney 2007). #### **Minimum Population Estimate** The log-normal 20th percentile of the 2001-2005 average abundance estimate is 11,754 northern right-whale dolphins. #### **Current Population Trend** Estimates of northern right whale dolphin abundance from surveys conducted in 1991/93, 1996, and 2001 in California waters were
9,929 (CV = 0.49); 14,593 (0.55); and 10,915 (0.41), respectively (Barlow 2003). Abundance estimates for all California, Oregon, and Washington waters from 1996, 2001, and 2005 surveys were $\frac{19,619 (0.43)}{(0.43)}$ 11,347 (CV = 0.27), $\frac{21,104 (0.30)}{(0.30)}$ 14,937 (0.21), and 11,100 (0.60), respectively (Barlow and Forney 2007 $\frac{2003}{(0.43)}$, Forney 2007). Currently, there is no evidence of a trend in abundance for this stock. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No information on current or maximum net productivity rates is available for northern right-whale dolphins off the U.S. west coast. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size ($\frac{11,754}{10,031}$) times one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$) of 4%) times a recovery factor of 0.48 0.40 (for a species of unknown status with a mortality rate CV >0.30 and ≤ 0.60 0.80; Wade and Angliss 1997), resulting in a PBR of $\frac{113}{80}$ northern right-whale dolphins per year. # **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY** Fishery Information A summary of recent fishery mortality and injury for this stock of northern right-whale dolphin is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2000-2004 2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates and the relative rarity of northern right-whale dolphin entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of this particular species. Entanglement rates for this species may be related to oceanographic conditions, as lower entanglement rates have been observed during warm-water periods, such as El Niño (Figure 2). Mean annual takes in Table 1 are based on 2000-2004 2002-2006 data. This results in an average estimate of 18 3.8 (CV=0.31 0.83) northern right-whale dolphins taken annually. **Table 1.** Summary of available information on the incidental mortality and injury of northern right-whale dolphins (California/Oregon/Washington Stock) in commercial fisheries that might take this species. All observed entanglements of northern right-whale dolphins resulted in the death of the animal. Coefficients of variation for mortality estimates are provided in parentheses. Mean annual takes are based on 2000-2004 data unless noted otherwise. | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality | Estimated Annual
Mortality | Mean
Annual Takes
(CV in
parentheses) | |--|------------------------------------|--|---|-----------------------------|---|--| | CA/OR thresher
shark/swordfish drift
gillnet fishery | observer
data | 2000
2001
2002
2003
2004
2005
2006 | 22.9%
20.4%
22.1%
20.2%
20.6%
20.9%
18.5% | 11
5
2
1
1
0 | 48 (0.48)
25 (0.0.57)
9 (0.70)
5 (1.00)
5 (0.99) | 18 (0.31)
3.8 (0.83) | | Minimum total annual take | 18 (0.31)
3.8 (0.83) | | | | | | **Figure 2.** Kill Entanglement rates of northern right whale dolphin per set fished in the California drift gillnet fishery for swordfish and thresher shark, 1990-2004 2006. Kill rates include observations from pingered and unpingered sets. Pingers were not used from 1990-95 and were used experimentally in 1996 and 1997. For the period 1998-2004 2006, over 99% of all observed sets utilized pingers. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). #### STATUS OF STOCK The status of northern right-whale dolphins in California, Oregon and Washington relative to OSP is not known, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. The average annual human-caused mortality in 2000-2004 2002-2006 (18 3.8 animals) is estimated to be less than the PBR (113 80), and therefore they are not classified as a "strategic" stock under the MMPA. The total fishery mortality and serious injury for northern right-whale dolphins is greater less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. - Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ 97 11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-233. - Barlow, J., K. A. Forney, P. S. Hill, R. L. Brownell, Jr., J. V. Carretta, D. P. DeMaster, F. Julian, M. S. Lowry, T. Ragen, and R. R. Reeves. 1997. U.S. Pacific Marine Mammal Stock Assessments: 1996. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-248. 223p. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Dizon, A., C. LeDuc, and R. LeDuc. 1994. Intraspecific structure of the northern right-whale dolphin (*Lissodelphis borealis*): The power of an analysis of
molecular variation for differentiating genetic stocks. CalCOFI Rep. 35:61-67. - Dizon, A. E., G. M. O'Corry-Crowe, and B. L. Taylor. (1995). Why statistical power is necessary to link analyses of molecular variation to decisions about population structure. pp. 288-294 *In:* J. L. Neilsen (ed.), Evolution and the Aquatic Ecosystem: Defining Unique Units in Population Conservation. American Fisheries Society Symposium 17. - Dohl, T. P., R. C. Guess, M. L. Duman, and R. C. Helm. 1983. Cetaceans of central and northern California, 1980-1983: Status, abundance and distribution. OCS Study MMS 84-0045. Minerals Management Service Contract # 14-12-0001-29090. 284p. - Dohl, T. P., K. S. Norris, R. C. Guess, J. D. Bryant, and M. W. Honig. 1980. Summary of marine mammal and seabird surveys of the Southern California Bight area, 1975-1978. Part II. Cetacea of the Southern California Bight. Final Report to the Bureau of Land Management, NTIS Rep. No. PB81248189. 414p. - Forney, K. A. 1994. Recent information on the status of odontocetes in Californian waters. NOAA Technical Memorandum NMFS, NOAA-TM-NMFS-SWFSC-202. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, USA. - Forney, K. A. and J. Barlow. 1998. Seasonal patterns in the abundance and distribution of California cetaceans, 1991-92. Mar. Mamm. Sci. 14:460-489. - Forney, K. A., J. Barlow and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-xxx. - Green, G., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, and K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington. Ch. 1. In: Oregon and Washington Marine Mammal and Seabird Surveys. OCS Study 91-0093. Final Report prepared for Pacific OCS Region, Minerals Management Service, U.S. Department of the Interior, Los Angeles, California. - Green, G., R. A. Grotefendt, M. A. Smultea, C. E. Bowlby, and R. A. Rowlett. 1993. Delphinid aerial surveys in Oregon and Washington waters. Final Report prepared for NMFS, National Marine Mammal Laboratory, 7600 Sand Point Way, NE, Seattle, Washington, 98115, Contract #50ABNF200058. - Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, Xiphias gladius, fisheries of the eastern North Pacific Ocean. In: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, Xiphias gladius. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - Leatherwood, S. and W. A. Walker. 1979. The northern right-whale dolphin *Lissodelphis borealis* Peale in the eastern North Pacific. *In:* Winn, H. E. and B. L. Olla (eds.), Behavior of Marine Mammals, p. 85-141. Plenum Press, New York London. - National Marine Fisheries Service, Southwest Fisheries Science Center. Unpublished data. - Sosa-Nishizaki, O., R. De la Rosa-Pacheco, R. Castro-Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Stick, K. C. and Hreha, L. 1989. Summary of the 1988 Washington/Oregon experimental thresher shark gill net fishery. State of Washington, Department of Fisheries, Progress Report 275. 40p. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. ### KILLER WHALE (Orcinus orca): Eastern North Pacific Offshore Stock ## STOCK DEFINITION AND GEOGRAPHIC RANGE Killer whales have been observed in all oceans and seas of world (Leatherwood Dahlheim 1978). Although reported from tropical and offshore waters, killer whales prefer the colder waters of both hemispheres, with greatest abundances found within 800 km of major continents (Mitchell 1975). Along the west coast of North America, killer whales occur along the entire Alaskan coast (Braham Dahlheim 1982), in British Columbia and Washington inland waterways (Bigg et al. 1990), and along the outer coasts Washington, Oregon and California (Green et al. 1992: Barlow 1995, 1997; Forney et al. 1995; Barlow and Forney 2007). Seasonal and vear-round occurrence have been noted for killer whales throughout Alaska (Braham and Dahlheim 1982) and in the intracoastal waterways of British Columbia and Washington, where pods have been labeled as 'resident', 'transient' and 'offshore' (Bigg et al. 1990, Ford et al. 1994) based on aspects of morphology, ecology, genetics and behavior (Ford and Fisher 1982; Baird and Stacey 1988; Baird et al. 1992, Hoelzel et al. 1998). Through examination of photographs of recognizable individuals and pods, movements of whales between geographical areas have been documented. For example, whales identified in Prince William Sound have **Figure 1.** Killer whale sightings based on aerial and shipboard surveys off California, Oregon and Washington, 1991- 2005 (see Appendix 2 for data sources and information on timing and location of survey effort). Sightings include killer whales from all stocks found in this region. Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. been observed near Kodiak Island (Heise et al. 1991) and whales identified in Southeast Alaska have been observed in Prince William Sound, British Columbia, and Puget Sound (Leatherwood et al. 1990, Dahlheim et al. 1997). Movements of killer whales between the waters of Southeast Alaska and central California have also been documented (Goley and Straley 1994). Offshore killer whales have more recently also been identified off the coasts of California, Oregon, and rarely, in Southeast Alaska (Ford et al. 1994, Black et al. 1997, Dahlheim et al. 1997). They apparently do not mix with the transient and resident killer whale stocks found in these regions (Ford et al. 1994, Black et al. 1997). Studies indicate the 'offshore' type, although distinct from the other types ('resident' and 'transient'), appears to be more closely related genetically, morphologically, behaviorally, and vocally to the 'resident' type killer whales (Black et al. 1997, Hoelzel et al. 1998; J. Ford, pers. comm.; L. Barrett-Lennard, pers. comm.). Based on data regarding association patterns, acoustics, movements, genetic differences, and potential fishery interactions, five killer whale stocks are recognized within the Pacific U.S. EEZ 1) the Eastern North Pacific Northern Resident stock - occurring from British Columbia through Alaska, 2) the Eastern North Pacific Southern Resident stock - occurring within the inland waters of Washington and southern British Columbia, 3) the Eastern North Pacific Transient stock - occurring from Alaska through California, 4) the Eastern North Pacific Offshore stock - occurring from Southeast Alaska through California (this report), and 5) the Hawaiian stock. 'Offshore' whales in Canadian waters are considered part of the Eastern North Pacific Offshore stock. The Stock Assessment Reports for the Alaska Region contain assessments of the Eastern North Pacific Northern Resident and transient stocks, and the most recent assessment for the Hawaii Stock is included in this volume. #### POPULATION SIZE Off British Columbia, approximately 200 offshore killer whales were identified between 1989 and 1993 (Ford et al. 1994), and 20 of these individuals have also been seen off California (Black et al. 1997). Using only good quality photographs that clearly show characteristics of the dorsal fin and saddle patch region, an additional 11 offshore killer whales that were not previously known have been identified off the California coast, bringing the total number of known individuals in this population to 211. This is certainly an underestimate of the total population size, because not all animals in this population have been photographed. In the future, it may be possible estimate the total abundance of this transboundary stock using mark-recapture analyses based on individual photographs. Based on summer/fall shipboard linetransect surveys in 2001 (Barlow and Forney 2007 2003) and 2005 (Forney 2007), the total number of killer whales within 300 nmi of the coasts of California, Oregon and Washington is estimated to be 1,214 1,014 animals (CV= 0.29). There is currently no way to reliably distinguish the different stocks of killer whales from sightings at sea, but photographs of individual animals can provide a rough estimate of the proportion of whales in each stock. A total of 161 individual killer whales photographed off California and Oregon have been determined to belong to the transient (105 whales) and offshore (56 whales) stocks (Black et al. 1997). Using these proportions to prorate the line transect abundance estimate yields an estimate of $56/161 * \frac{1,214}{1,014} = \frac{422}{1,014} \frac{422$ expected to be a conservative estimate of the number of offshore killer whales, because offshore whales apparently are less frequently seen near the coast (Black et al. 1997), and therefore photographic sampling may be biased towards transient whales. For stock assessment purposes, this combined value is currently the best available estimate of abundance for offshore killer whales off the coasts of California, Oregon and Washington. #### **Minimum Population
Estimate** The total number of known offshore killer whales along the U.S. West coast, Canada and Alaska is 211 animals, but it is not known what proportion of time this transboundary stock spends in U.S. waters, and therefore this number is difficult to work with for PBR calculations. A minimum abundance estimate for all killer whales along the coasts of California, Oregon and Washington can be estimated from the 2001-2005 line-transect surveys as the 20^{th} percentile of the mean 2001-2005 abundance estimate, or 953 willer whales. Using the same prorating as above, a minimum of 56/161 * 953 798 = 331 278 offshore killer whales are estimated to be in U.S. waters off California, Oregon and Washington. #### **Current Population Trend** No information is available regarding trends in abundance of Eastern North Pacific offshore killer whales. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No information on current or maximum net productivity rates is available for killer whales in this region. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (331 278) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.50 (for a species of unknown status with no known fishery mortality; Wade and Angliss 1997), resulting in a PBR of 3.3 2.8 offshore killer whales per year. ## HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Fishery Information A summary of information on fisheries that may take animals from this killer whale stock is shown in Table 1 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). More detailed information on these fisheries is provided in Appendix 1. In the California drift gillnet fishery, no offshore killer whales have been observed entangled (Julian 1997; Julian and Beeson 1998; Cameron and Forney 1999, 2000; Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007), but one killer whale from the Eastern North Pacific Transient Stock was observed taken in 1995, and offshore killer whales may also occasionally be entangled. Additional potential sources of killer whale mortality are set gillnets and longlines. In California, an observer program between July 1990 and December 1994 monitored 5-15% of all sets in the large mesh (>3.5") set gillnet fishery for halibut and angel sharks, and no killer whales were observed taken. Based on observations for longline fisheries in other regions (i.e. Alaska; Yano and Dahlheim 1995), fishery interactions may also occur with U.S. West coast pelagic longline fisheries, but no such interactions have been documented to date. **Table 1.** Summary of available information on the incidental mortality and injury of killer whales (Eastern North Pacific Offshore Stock) in commercial fisheries that might take this species. Mean annual takes are based on 2000-2004 2002-2006 data unless noted otherwise. | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality | Estimated Annual
Mortality | Mean
Annual Takes
(CV in
parentheses) | |--|------------------|--|---|-----------------------|-------------------------------|--| | CA/OR thresher
shark/swordfish drift
gillnet fishery | observer
data | 2000
2001
2002
2003
2004
2005
2006 | 22.9%
20.4%
22.1%
20.2%
20.6%
20.9%
18.5% | 0
0
0
0 | 0
0
0
0
0 | 0 | | Minimum total annual tak | 0 | | | | | | Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). #### **Historical mortality** California coastal whaling operations killed five killer whales between 1962 and 1967 (Rice 1974). An additional killer whale was taken by whalers in British Columbian waters (Hoyt 1981). It is unknown whether any of these animals belonged to the Eastern North Pacific Offshore stock. #### STATUS OF STOCK The status of killer whales in California in relation to OSP is unknown, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. There has been no documented human-caused mortality of this stock, and therefore they are not classified as a "strategic" stock under the MMPA. The total fishery mortality and serious injury for offshore killer whales is zero and can be considered to be insignificant and approaching zero mortality and serious injury rate. - Baird, R. W., and P. J. Stacey. 1988. Variation in saddle patch pigmentation in populations of killer whales (*Orcinus orca*) from British Columbia, Alaska, and Washington State. Can. J. Zool. 66:2582-2585. - Baird, R. W., Abrams, P. A., and L. M. Dill. 1992. Possible indirect interactions between transient and resident killer whales: implications for the evolution of foraging specializations in the genus *Orcinus*. Oecologia 89:125-132. - Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ-97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J., K. A. Forney, P. S. Hill, R. L. Brownell, Jr., J. V. Carretta, D. P. DeMaster, F. Julian, M. S. Lowry, T. Ragen, and R. R. Reeves. 1997. U.S. Pacific marine mammal stock assessments: 1996. U.S. Dep. Commer., NOAA Tech. Memo. NMFS SWFSC 248. 223 pp. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Barrett-Lennard, L. Univ. of British Columbia, 6270 University Blvd., Vancouver, BC V6T1Z4. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Bigg, M. A., P. F. Olesiuk, G. M. Ellis, J. K. B. Ford, and K. C. Balcomb III. 1990. Social organization and genealogy of resident killer whales (*Orcinus orca*) in the coastal waters of British Columbia and Washington State. Rep. int. Whal. Commn Special Issue 12:386-406. - Black, N. A., A. Schulman-Janiger, R. L. Ternullo, and M. Guerrero-Ruiz. 1997. Killer whales of California and western Mexico: A Catalog of photo-identified individuals. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-247. 174p. - Braham, H. W., and M. E. Dahlheim. 1982. Killer whales in Alaska documented in the Platforms of Opportunity Program. Rep. Int. Whal. Commn., 32:643-646. - Cameron, G., and K. A. Forney. 1999. Estimates of cetacean mortality in the California gillnet fisheries for 1997 and 1998. Paper SC/51/O4 presented to the International Whaling Commission, 1999 (unpublished). 14pp. - Cameron, G.A. and K.A. Forney. 2000. Preliminary estimates of cetacean mortality in California/Oregon Gillnet Fisheries for 1999. Report SC/52/O24 presented to the Scientific Committee of the International Whaling Commission, June 2000 (unpublished). 12p. [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA.] - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of
marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the - IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Dahlheim, M. E., D. Ellifrit, and J. Swenson. 1997. Killer Whales of Southeast Alaska: A Catalogue of Photoidentified Individuals. Day Moon Press, Seattle, WA. 82 pp. + appendices. - Ford, J. K. B., Vancouver Aquarium, P.O. Box 3232, Vancouver, BC V6B 3XB, Canada. - Ford, J. K. B., G. M. Ellis, and K.C. Balcomb. 1994. Killer whales. The natural history and genealogy of *Orcinus orca* in British Columbia and Washington State. UBC Press, Vancouver, Canada - Ford, J. K. B., and H. D. Fisher. 1982. Killer whale (*Orcinus orca*) dialects as an indicator of stocks in British Columbia. Rep. Int. Whal. Commn 32:671-679. - Forney, K. A., J. Barlow and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27p. - Goley, P. D., and J. M. Straley. 1994. Attack on gray whales (*Eschrichtius robustus*) in Monterey Bay, California, by killer whales (*Orcinus orca*) previously identified in Glacier Bay, Alaska. Can. J. Zool. 72:1528-1530. - Green, G., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, and K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington. Ch. 1. In: Oregon and Washington Marine Mammal and Seabird Surveys. OCS Study 91-0093. Final Report prepared for Pacific OCS Region, Minerals Management Service, U.S. Department of the Interior, Los Angeles, California. - Heise, K., G. Ellis, and C. Matkin. 1991. A catalogue of Prince William Sound Killer Whales. North Gulf Oceanic Society, Homer, AK. Published for the National Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115. - Hoelzel, A. R., M. E. Dahlheim, and S. J. Stern. 1998. Low genetic variation among killer whales (*Orcinus orca*) in the Eastern North Pacific, and genetic differentiation between foraging specialists. J. Heredity 89:121-128. - Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Hoyt, E. 1981. The Whale Called Killer. E. P. Dutton, New York. - Julian, F. 1997. Cetacean mortality in California gill net fisheries: Preliminary estimates for 1996. Paper SC/49/SM02 presented to the International Whaling Commission, 1997 (unpublished). 13 pp. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fishery Bulletin 96:271-284. - Leatherwood, J. S., and M. E. Dahlheim. 1978. Worldwide distribution of pilot whales and killer whales. Naval Ocean Systems Center, Tech. Rep. 443:1-39. - Leatherwood, S., C. O. Matkin, J. D. Hall, and G. M. Ellis. 1990. Killer whales, *Orcinus orca*, photo_identified in Prince William Sound, Alaska 1976 to 1987. Can. Field Naturalist 104:362_371. - Mitchell, E. D. 1975. Report on the meeting on small cetaceans, Montreal, April 1-11, 1974. J. Fish. Res. Board Canada, 32:914-916. - Rice, D. W. 1974. Whales and whale research in eastern North Pacific. p. 170-195 *In:* W. E. Schevill (ed.), The Whale Problem A Status Report. Harvard University Press, Cambridge, MA. - Sosa-Nishizaki, O., R. De la Rosa-Pacheco, R. Castro-Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Yano, K. and M. E. Dahlheim. 1995. Killer whale, *Orcinus orca*, depredation on longline catches of bottomfish in the southeastern Bering Sea and adjacent waters. Fishery Bulletin 93:355-372. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. ## KILLER WHALE (Orcinus orca): Eastern North Pacific Southern Resident Stock #### STOCK DEFINITION AND GEOGRAPHIC RANGE Killer whales have been observed in all oceans and seas of the world (Leatherwood and Dahlheim 1978). Although reported from tropical and offshore waters, killer whales prefer the colder waters of both hemispheres, with greatest abundances found within 800 km of major continents (Mitchell 1975). Along the west coast of North America, killer whales occur along the entire Alaskan coast (Braham and Dahlheim 1982), in British Columbia and Washington inland waterways (Bigg et al. 1990), and along the outer coasts of Washington, Oregon, and California (Green et al. 1992; Barlow 1995, 1997; Forney et al. 1995). Seasonal and vear-round occurrence has been noted for killer whales throughout Alaska (Braham and Dahlheim 1982) and in the intracoastal waterways of British Columbia and Washington State, where pods have been labeled as 'resident,' 'transient,' and 'offshore' (Bigg et al. 1990, Ford et al. 1994) based on aspects of morphology, ecology, genetics, and behavior (Ford and Fisher 1982, Baird and Stacey 1988, Baird et al. 1992, Hoelzel et al. 1998). Through examination of photographs of recognizable individuals and pods, movements of whales between geographical areas have been documented. For example, whales identified in Prince William Sound have been observed near Kodiak Island (Matkin et al. 1999) and whales identified in Southeast Alaska have been observed in Prince William Sound, British Columbia, and Puget Sound (Leatherwood et al. 1990, Dahlheim et al. 1997). **Figure 1.** Approximate April-October distribution of the Eastern North Pacific Southern Resident killer whale stock (shaded area) and range of sightings (dotted line). Studies on mtDNA restriction patterns provide evidence that the 'resident' and 'transient' types are genetically distinct (Stevens et al. 1989, Hoelzel 1991, Hoelzel and Dover 1991, Hoelzel et al. 1998). Analysis of 73 samples collected from eastern North Pacific killer whales from California to Alaska has demonstrated significant genetic differences among 'transient' whales from California through Alaska, 'resident' whales from the inland waters of Washington, and 'resident' whales ranging from British Columbia to the Aleutian Islands and Bering Sea (Hoelzel et al. 1998). However, low genetic diversity throughout this specie's world-wide distribution has hampered efforts to clarify its taxonomy. At an international symposium in cetacean systematics in May 2004, a workshop was held to review the taxonomy of killer whales. A majority of invited experts felt that the Resident-and Transient-type whales in the eastern North Pacific probably merited species or subspecies status (Reeves et al. 2004). Most sightings of the Eastern North Pacific Southern Resident stock of killer whales have occurred in the summer in inland waters of Washington and southern British Columbia. However, pods belonging to this stock have also been sighted in coastal waters off southern Vancouver Island and Washington (Bigg et al. 1990, Ford et al. 2000, NWFSC unpubl. data). The complete winter range of this stock is uncertain. Of the three pods comprising this stock, one (J1) is commonly sighted in inshore waters in winter, while the other two (K1 and L1) apparently spend more time offshore (Ford et al. 2000). These latter two pods have been sighted as far south as Monterey Bay and central California in recent years (N. Black, pers. comm., K. Balcomb, pers. comm.) They sometimes have also been seen entering the inland waters of Vancouver Island from the north—through Johnstone Strait—in the spring (Ford et al. 2000), suggesting that they may spend time along the entire outer coast of Vancouver Island during the winter. In May 2003, these pods were sighted off the northern end of the Queen Charlotte Islands, the furthest north they had ever previously been documented (J. Ford, pers. comm.). Based on data regarding association patterns, acoustics, movements, genetic differences and potential fishery interactions, five killer whale stocks are recognized within the Pacific U.S. EEZ: 1) the Eastern North Pacific Northern Resident stock - occurring from British Columbia through Alaska, 2) the Eastern North Pacific Southern Resident stock - occurring mainly within the inland waters of Washington State and southern British Columbia (see Fig. 1), 3) the Eastern North Pacific Transient stock - occurring from Alaska through California, 4) the Eastern North Pacific Offshore stock - occurring from Southeast Alaska through California, and 5) the Hawaiian stock. The Stock Assessment Reports for the Alaska Region contain information concerning
the Eastern North Pacific Northern Resident and Eastern North Pacific Transient stocks. #### POPULATION SIZE The Eastern North Pacific Southern Resident stock is a trans-boundary stock including killer whales in inland Washington and southern British Columbia waters. Photo-identification of individual whales through the years has resulted in a substantial understanding of this stock's structure, behaviors, and movements. In 1993, the three pods comprising this stock totaled 96 killer whales (Ford et al. 1994). The population increased to 99 whales in 1995, then declined to 79 whales in 2001, and most recently numbered 89 86 whales in 20067. (Fig. 2; Ford et al. 2000; Center for Whale Research, unpubl. data). The 2001-2005 counts included a whale born in 1999 (L-98) that was listed as missing during the annual census in May and June 2001 but was subsequently discovered alone in an inlet off the west coast of Vancouver Island (J. Ford, pers. comm.). L-98 remained separate from L pod until 10 March 2006 when he died due to injuries associated with a vessel interaction in Nootka Sound. L-98 has been subtracted from the official 2006 and subsequent population censuses. In addition, four two whales calves that have not been observed during the fall 20067 surveys will not be confirmed as missing from members of the population until the official census is completed in May/June 20078 (Center for Whale Research, unpubl. data). #### **Minimum Population Estimate** The abundance estimate for this stock of killer whales is a direct count of individually identifiable animals. It is thought that the entire population is censused every year. This estimate therefore serves as both a best estimate of abundance and a minimum estimate of abundance. Thus, the minimum population estimate (N_{MIN}) for the Eastern North Pacific Southern Resident stock of killer whales is $\frac{89}{86}$ animals. #### **Current Population Trend** During the live-capture fishery that existed from 1967 to 1973, it is estimated that 47 killer whales, mostly immature, were taken out of this stock (Ford et al. 1994). The first complete census of this stock occurred in 1974. Between 1974 and 1993 the Southern Resident stock increased approximately 35%, from 71 to 96 individuals (Ford et al. 1994). This represents a net annual growth rate of 1.8% during those years. Since 1995, the population declined to 79 whales before increasing from 2002-20065 to a total of 8991 whales. The population has declined for the past two years to 86 whales (Ford et al. 2000; Center for Whale Research, unpubl. data). **Figure 2.** Population of Eastern North Pacific Southern Resident stock of killer whales, 1974-20067. Each year's count includes animals first seen and first missed; a whale is considered first missed the year after it was last seen alive (Ford et al. 2000; Center for Whale Research, unpubl. data). #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES A reliable estimate of the maximum net productivity rate is currently unavailable for this stock of killer whales. Studies of 'resident' killer whale pods in British Columbia and Washington waters resulted in estimated population growth rates of 2.92% and 2.54% over the period from 1973 to 1987 (Olesiuk et al. 1990, Brault and Caswell 1993). For southern resident killer whales, estimates of the population growth rate have been made during the three periods when the population has been documented increasing since monitoring began in 1974. From 1974 to 1980 the population increased at a rate of 2.6%/year, 2.3%/year from 1985 to 1996, and $\frac{2.5}{3.6}$ %/year from 2002 to 20035 (Krahn et al. 2004Center for Whale Research, unpubl. data). However, a population increases at the maximum growth rate (R_{MAX}) only when the population is at extremely low levels; thus, any of these estimates may be an underestimate of R_{MAX} . Hence, until additional data become available, it is recommended that the cetacean maximum theoretical net productivity rate (R_{MAX}) of 4% be employed for this stock (Wade and Angliss 1997). #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (89 86) $\underline{\text{times}}$ one-half the default maximum net growth rate for cetaceans (½ of 4%) $\underline{\text{times}}$ a recovery factor of 0.1 (for an endangered stock, Wade and Angliss 1997), resulting in a PBR of 0.17 whales per year. ## HUMAN-CAUSED MORTALITY AND SERIOUS INJURY #### **Fisheries Information** NMFS observers have monitored the northern Washington marine set gillnet fishery since 1988 (Gearin et al. 1994, 2000; P. Gearin, unpubl. data). Observer coverage ranged from approximately 40 to 83% in the entire fishery (coastal + inland waters) between 1998 and 2002. There was no observer coverage in this fishery from 1999-2003. However, the total fishing effort was 4, 46, 4.5 and 7 net days (respectively) in those years, it occurred only in inland waters, and no killer whale takes were reported. No killer whale mortalities have been recorded in this fishery since the inception of the observer program. In 1993, as a pilot for future observer programs, NMFS in conjunction with the Washington Department of Fish and Wildlife (WDFW) monitored all non-treaty components of the Washington Puget Sound Region salmon gillnet fishery (Pierce et al. 1994). Observer coverage was 1.3% overall, ranging from 0.9% to 7.3% for the various components of the fishery. Encounters (whales within 10 m of a net) with killer whales were reported, but not quantified, though no entanglements occurred. In 1994, NMFS and WDFW conducted an observer program during the Puget Sound non-treaty chum salmon gillnet fishery (areas 10/11 and 12/12B). A total of 230 sets were observed during 54 boat trips, representing approximately 11% observer coverage of the 500 fishing boat trips comprising the total effort in this fishery, as estimated from fish ticket landings (Erstad et al. 1996). No interactions with killer whales were observed during this fishery. The Puget Sound treaty chum salmon gillnet fishery in Hood Canal (areas 12, 12B, and 12C) and the Puget Sound treaty sockeye/chum gillnet fishery in the Strait of Juan de Fuca (areas 4B, 5, and 6C) were also monitored in 1994 at 2.2% (based on % of total catch observed) and approximately 7.5% (based on % of observed trips to total landings) observer coverage, respectively (NWIFC 1995). No interactions resulting in killer whale mortalities were reported in either treaty salmon gillnet fishery. Also in 1994, NMFS, WDFW, and the Tribes conducted an observer program to examine seabird and marine mammal interactions with the Puget Sound treaty and non-treaty sockeye salmon gillnet fishery (areas 7 and 7A). During this fishery, observers monitored 2,205 sets, representing approximately 7% of the estimated number of sets in the fishery (Pierce et al. 1996). Killer whales were observed within 10 m of the gear during 10 observed sets (32 animals in all), though none were observed to have been entangled. Killer whale takes in the Washington Puget Sound Region salmon drift gillnet fishery are unlikely to have increased since the fishery was last observed in 1994, due to reductions in the number of participating vessels and available fishing time (see details in Appendix 1). Fishing effort and catch have declined throughout all salmon fisheries in the region due to management efforts to recover ESA-listed salmonids. An additional source of information on the number of killer whales killed or injured incidental to commercial fishery operations is the self-reported fisheries information required of vessel operators by the MMPA. During the period between 1994 and 2004, there were no fisher self-reports of killer whale mortalities from any fisheries operating within the range of this stock. However, because logbook records (fisher self-reports required during 1990-94) are most likely negatively biased (Credle et al. 1994), these are considered to be minimum estimates. Logbook data are available for part of 1989-1994, after which incidental mortality reporting requirements were modified. Under the new system, logbooks are no longer required; instead, fishers provide self-reports. Data for the 1994-1995 phase-in period is fragmentary. After 1995, the level of reporting dropped dramatically, such that the records are considered incomplete and estimates of mortality based on them represent minimums (see Appendix 7 in Angliss and Lodge 2002 for details). Due to a lack of observer programs, there are few data concerning the mortality of marine mammals incidental to Canadian commercial fisheries. Since 1990, there have been no reported fishery-related strandings of killer whales in Canadian waters. However, in 1994 one killer whale was reported to have contacted a salmon gillnet but did not entangle (Guenther et al. 1995). Data regarding the level of killer whale mortality related to commercial fisheries in Canadian waters are not available, though the mortality level is thought to be minimal. During this decade there have been no reported takes from this stock incidental to commercial fishing operations (D. Ellifrit, pers. comm.), no reports of interactions between killer whales and longline operations (as occurs in Alaskan waters; see Yano and Dahlheim 1995), no reports of stranded animals with net marks, and no photographs of individual whales carrying fishing gear. The total fishery mortality and serious injury for this stock is zero. #### **Other Mortality** According to Northwest Marine Mammal Stranding Network records, maintained by the NMFS Northwest Region, no human-caused killer whale mortalities or serious injuries were reported from non-fisheries sources in 1998-2004. There was documentation of a whale-boat collision in Haro Strait in 2005 which resulted in a minor injury to a whale. In 2006, whale L98 was killed during a vessel interaction.
It is important to note that L98 had become habituated to regularly interacting with vessels during its isolation in Nootka Sound. The annual level of human-caused mortality for this stock over the past five years is 0.2 animals per year (reflecting the vessel strike mortality of animal L98 in 2006). #### STATUS OF STOCK On November 15, 2005 NMFS listed Southern Resident killer whales as endangered under the ESA. Total annual fishery mortality and serious injury for this stock (0) is not known to exceed 10% of the calculated PBR (0.018) and, therefore, appears to be insignificant and approaching zero mortality and serious injury rate. The estimated annual level of human-caused mortality and serious injury of 0.2 animals per year exceeds the PBR (0.18). Southern Resident killer whales are formally listed as "endangered" under the ESA and consequently the stock is automatically considered as a "depleted" and "strategic" stock under the MMPA. #### Habitat Issues Several of the potential risk factors identified for this population have habitat implications. The summer range of this population, the inland waters of Washington and British Columbia, is the home to a large commercial whale watch industry as well as high levels of recreational boating and commercial shipping. There continues to be concern about potential for masking effects by noise generated from these activities on the whales' communication and foraging. This population appears to be Chinook salmon specialists (Ford and Ellis 2006, NWFSC unpubl.data), and there is some evidence that changes in coast—wide Chinook abundance has affected this population (Ford et al. 2005). In addition, the high trophic level and longevity of the animals has predisposed them to accumulate levels of contaminants that are high enough to cause potential health impacts. In particular, there is recent evidence of extremely high levels of flame retardants in young animals (Krahn et. al 2007). - Angliss, R. P., and K. L. Lodge. 2002. Alaska marine mammal stock assessments, 2002. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-133. 224 pp. - Baird, R. W., and P. J. Stacey. 1988. Variation in saddle patch pigmentation in populations of killer whales (*Orcinus orca*) from British Columbia, Alaska, and Washington State. Can. J. Zool. 66 (11):2582-2585. - Baird, R. W., P. A. Abrams, and L. M. Dill. 1992. Possible indirect interactions between transient and resident killer whales: implications for the evolution of foraging specializations in the genus *Orcinus*. Oecologia 89:125-132. - Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1 14. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ-97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25 pp. - Bigg, M. A., P. F. Olesiuk, G. M. Ellis, J. K. B. Ford, and K. C. Balcomb III. 1990. Social organization and genealogy of resident killer whales (*Orcinus orca*) in the coastal waters of British Columbia and Washington State. Pp. 386-406, *In:* Hammond, P. S., S. A. Mizroch, and G. P. Donovan (eds.), Individual Recognition of Cetaceans: Use of Photo-identification and Other Techniques to Estimate Population Parameters. Rep. Int. Whal. Commn. Special Issue 12. - Black, N. A. P.O. Box 52001, Pacific Grove, CA 93950. - Braham, H. W., and M. E. Dahlheim. 1982. Killer whales in Alaska documented in the Platforms of Opportunity Program. Rep. Int. Whal. Commn. 32:643-646. - Brault, S., and H. Caswell. 1993. Pod-specific demography of killer whales (*Orcinus orca*). Ecology 74(5):1444-1454 - Center for Whale Research, 1359 Smugglers Cove Rd., Friday Harbor, WA 98250. - Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 2003. Species Listing. Available at URL: http://www.cosewic.gc.ca/eng/sct0/index_e.cfm (access date October 2003). - Credle, V. R., D. P. DeMaster, M. M. Merklein, M. B. Hanson, W. A. Karp, and S. M. Fitzgerald (eds.). 1994. NMFS observer programs: minutes and recommendations from a workshop held in Galveston, Texas, November 10-11, 1993. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-94-1. 96 pp. - Dahlheim, M. E., D. K. Ellifrit, and J. D. Swenson. 1997. Killer whales of Southeast Alaska: a catalogue of photoidentified individuals. National Marine Mammal Laboratory, AFSC, NMFS, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. 79 pp. - Ellifrit, D. Center for Whale Research, 1359 Smugglers Cove Rd., Friday Harbor, WA 98250. - Erstad, P., S. J. Jeffries, and D. J. Pierce. 1996. 1994 Report for the Puget Sound fishery observer program in management areas 10/11 & 12/12B: nontreaty chum gill net fishery. Final Report, Washington Dept. Fish and Wildlife, Olympia, WA. 14 pp. - Ford, J. K. B. Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, BC V9R 5K6. - Ford, J. K. B., and H. D. Fisher. 1982. Killer whale (*Orcinus orca*) dialects as an indicator of stocks in British Columbia. Rep. Int. Whal. Commn. 32:671-679. - Ford, J. K. B., G. M. Ellis, and K. C. Balcomb. 1994. Killer Whales: The Natural History and Genealogy of *Orcinus orca* in British Columbia and Washington State. University of British Columbia Press, Vancouver, BC, and University of Washington Press, Seattle. 102 pp. - Ford, J. K. B., G. M. Ellis, and K. C. Balcomb. 2000. Killer Whales: The Natural History and Genealogy of *Orcinus orca* in British Columbia and Washington. 2nd edition. University of British Columbia Press, Vancouver, BC, and University of Washington Press, Seattle. 104 pp. - Ford, J.K.B., and G.M. Ellis. 2006. Selective foraging by fish-eating killer whales *Orcinus orca* in British Columbia. Marine Ecology Progress Series, 316: 185–199. - Ford, J.K.B., G.M. Ellis, and P.F. Olesiuk. 2005. Linking prey and population dynamics: did food limitation cause recent declines of 'resident' killer whales (Orcinus orca) in British Columbia? Research Document 2005/042. Available http://www.dfo-mpo.gc.ca/csas/, Canadian Science Advisory Secretariat. - Forney, K. A., J. Barlow, and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15_26. - Gearin, P. J. National Marine Mammal Laboratory, AFSC, NMFS, 7600 Sand Point Way NE, Seattle, WA 98115. - Gearin, P. J., S. R. Melin, R. L. DeLong, H. Kajimura, and M. A. Johnson. 1994. Harbor porpoise interactions with a chinook salmon set-net fishery in Washington State. Rep. Int. Whal. Commn. Special Issue 15:427-438. - Gearin, P. J., M. E. Gosho, J. L. Laake, L. Cooke, R. L. DeLong, and K. M. Hughes. 2000. Experimental testing of acoustic alarms (pingers) to reduce bycatch of harbour porpoise, *Phocoena phocoena*, in the state of Washington. J. Cetacean Res. Manage. 2(1):1-9. - Green, G. A., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnel, and K. C. Balcomb. 1992. Cetacean distribution and abundance off Oregon and Washington, 1989-1990. Pp. 1-100, *In:* Brueggeman, J. J. (ed.), Oregon and Washington marine mammal and seabird surveys. Final Rep. OCS Study MMS 91-0093. - Guenther, T. J., R. W. Baird, R. L. Bates, P. M. Willis, R. L. Hahn, and S. G. Wischniowski. 1995. Strandings and fishing gear entanglements of cetaceans on the west coast of Canada in 1994. Paper SC/47/O6 presented to the International Whaling Commission, May 1995 (unpublished). 7 pp. - Hoelzel, A. R. 1991. Analysis of regional mitochondrial DNA variation in the killer whale; implications for cetacean conservation. Rep. Int. Whal. Commn. Special Issue 13:225-233. - Hoelzel, A. R., and G. A. Dover. 1991. Genetic differentiation between sympatric killer whale populations. Heredity 66:191-195. - Hoelzel, A. R., M. E. Dahlheim, and S. J. Stern. 1998. Low genetic variation among killer whales (*Orcinus orca*) in the Eastern North Pacific, and genetic differentiation between foraging specialists. J. Heredity 89:121-128. - Krahn, M. M., P. R. Wade, S. T. Kalinowski, M. E. Dahlheim, B. L. Taylor, M. B. Hanson, G. M. Ylitalo, R. P. Angliss, J. E. Stein, and R. S. Waples. 2002. Status review of Southern Resident killer whales (*Orcinus orca*) under the Endangered Species Act. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-NWFSC-54. 133 pp. - Krahn, M. M., M. J. Ford, W. F. Perrin, P. R. Wade, R. P. Angliss, M. B. Hanson, B. L. Taylor, G. Ylitalo, M. E. Dahlheim, J. E. Stein, and R. S. Waples. 2004. 2004 Status review of Southern Resident killer whales (*Orcinus orca*) under the Endangered Species Act. U.S. Dep. Commer., NOAA Tech. Memo NMFS-NWFSC-62. 73 pp. - Krahn, M.M., M.B. Hanson, R.W. Baird, R.H. Boyer, D.G. Burrows, C.K. Emmons, J. K.B. Ford, L. L. Jones, D. P. Noren, P. S. Ross, G. S. Schorr, T.K. Collier. 2007. Persistent organic pollutants and stable isotopes in biopsy samples (2004/2006) from Southern Resident killer whales. Mar. Poll. Bull. 54 (2007) 1903–1911. - Leatherwood, J. S., and M. E. Dahlheim. 1978. Worldwide distribution of pilot whales and killer whales. Naval Ocean Systems Center, Tech. Rep. 443:1-39. - Leatherwood, S., C. O. Matkin, J. D. Hall, and G. M. Ellis. 1990. Killer whales, *Orcinus orca*, photo_identified in Prince William Sound, Alaska 1976 to 1987. Can. Field Nat. 104:362_371. - Matkin, C., G. Ellis, E. Saulitis, L. Barrett-Lennard, and D. Matkin. 1999. Killer Whales of Southern Alaska. North Gulf Oceanic Society. 96 pp. - Mitchell, E. D. 1975. Report on the meeting on small cetaceans, Montreal, April 1-11, 1974. J. Fish. Res. Bd. Can. 32:914-916. - Northwest Indian Fisheries Commission (NWIFC). 1995. Monitoring of marbled murrelet and marine mammal interactions with 1994 tribal gillnet fisheries in northern Puget Sound, Hood Canal, and the Strait of Juan de Fuca. Final
Report to NMFS, Contract No. 52ABNF400087, and U.S. Fish and Wildlife Service. Unpubl. report. 41 pp. Available at NWIFC, 6730 Martin Way E, Olympia, WA 98516. - Olesiuk, P. F., M. A. Bigg, and G. M. Ellis. 1990. Life history and population dynamics of resident killer whales (*Orcinus orca*) in the coastal waters of British Columbia and Washington State. Rep. Int. Whal. Commn. Special Issue 12:209-242. - Pierce, D. J., W. P. Ritchie, and R. Kreuziger. 1994. Preliminary findings of seabird interactions with the non-treaty salmon gill net fishery: Puget Sound and Hood Canal Washington. Unpubl. report. Washington Dept. Fish and Wildlife, Olympia, WA. 39 pp. Available at WDFW, 600 Capitol Way N, Olympia, WA 98501. - Pierce, D. J., M. Alexandersdottir, S. J. Jeffries, P. Erstad, W. Beattie, and A. Chapman. 1996. Interactions of marbled murrelets and marine mammals with the 1994 Puget Sound sockeye gill net fishery. Final Report, Washington Dept. Fish and Wildlife, Olympia, WA. 21 pp. - Reeves, R.R., W.F. Perrin, B.L. Taylor, C.S. Baker, and S.L. Mesnick. 2004. Report of the workshop on shortcomings of cetacean taxonomy in relation to needs of conservation and management, April 30 May 2, 2004, La Jolla, California. U.S. Department of Commerce NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-363. 94pp. Available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA. 92037. - Ross, P. S., G. M. Ellis, M. G. Ikonomou, L. G. Barrett-Lennard, and R. F. Addison. 2000. High PCB concentrations in free-ranging Pacific killer whales, *Orcinus orca*: effects of age, sex and dietary preference. Mar. Pollut. Bull. 40(6):504-515. - Stevens, T. A., D. Duffield, E. Asper, K. Hewlett, A. Bolz, L. Gage, and G. Bossart. 1989. Preliminary findings of restriction fragment differences in mitochondrial DNA among killer whales (*Orcinus orca*). Can. J. Zool. 67:2592-2595. - Wade, P. R., and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. - Yano, K., and M. E. Dahlheim. 1995. Killer whale, *Orcinus orca*, depredation on longline catches of bottomfish in the southeastern Bering Sea and adjacent waters. Fish. Bull. 93:355-372. - Ylitalo, G. M., C. O. Matkin, J. Buzitis, M. M. Krahn, L. L. Jones, T. Rowles, and J. E. Stein. 2001. Influence of life-history parameters on organochlorine concentrations in free-ranging killer whales (*Orcinus orca*) from Prince William Sound, AK. Sci. Total Environ. 281:183-203. # SHORT-FINNED PILOT WHALE (Globicephala macrorhynchus): California/Oregon/Washington Stock ## STOCK DEFINITION AND GEOGRAPHIC RANGE Short-finned pilot whales were once commonly seen California, with Southern apparently resident population around Santa Catalina Island, as well as seasonal migrants (Dohl et al. 1980). After a strong El Niño event in 1982-83, short-finned pilot whales virtually disappeared from this region, and despite increased survey effort along the entire U.S. west coast, few sightings were made from 1984-1992 (Jones and Szczepaniak 1992; Barlow 1997; Carretta and Forney 1993; Shane 1994; Green et al. 1992, 1993). In 1993, six groups of short-finned pilot whales were again seen off California (Carretta et al. 1995; Barlow and Gerrodette 1996), and mortality in drift gillnets increased (Julian and Beeson 1998) but sightings remain rare (Barlow 1997). Figure 1 summarizes the sightings history of short-finned pilot whales off the U.S. west coast from 1991-2005. Although the full geographic range of the California, Oregon, and Washington population is not known, it may be continuous with animals found off Baja California, and its individuals are morphologically distinct from short-finned pilot whales found farther south in the eastern tropical Pacific (Polisini 1981). Separate southern and northern forms of shortfinned pilot whales have also been **Figure 1.** Short-finned pilot whale sightings made during aerial and shipboard surveys conducted off California, Oregon, and Washington, 1991-2005. See Appendix 2 for data sources and information on timing and location of survey effort. Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. documented for the western North Pacific (Kasuya et al. 1988; Wada 1988; Miyazaki and Amano 1994). For the Marine Mammal Protection Act (MMPA) stock assessment reports, short-finned pilot whales within the Pacific U.S. Exclusive Economic Zone are divided into two discrete, non-contiguous areas: 1) waters off California, Oregon and Washington (this report), and 2) Hawaiian waters. #### POPULATION SIZE Only one group of pilot whales (numbering approximately 7 animals) was seen during the two most recent ship surveys conducted off California, Oregon, and Washington in 2001 and 2005 (Barlow and Forney 2007 2003; Forney 2007). All animals were seen during the 2005 survey. The abundance of short-finned pilot whales in this region appears to be variable and influenced by prevailing oceanographic conditions, as with other odontocete species (Forney 1997, Forney and Barlow 1998). Because animals may spend time outside the U.S. Exclusive Economic Zone as oceanographic conditions change, a multi-year average abundance estimate is the most appropriate for management within U.S. waters. The 2001-2005 unweighted average abundance estimate for California, Oregon and Washington waters based on the two ship surveys is 245 (CV=0.97) short-finned pilot whales (Barlow and Forney 2007 2003; Forney 2007). #### **Minimum Population Estimate** The log-normal 20th percentile of the 2001-2005 unweighted average abundance estimate is 123 short-finned pilot whales. #### **Current Population Trend** Approximately nine years after the virtual disappearance of short-finned pilot whales following the 1982-83 El Niño, they appear to have returned to California waters, as indicated by an increase in sighting records as well as incidental fishery mortality (Barlow and Gerrodette 1996; Carretta et al. 1995; Julian and Beeson 1998). However, this cannot be considered a true growth in the population, because it merely reflects large-scale, long-term movements of this species in response to changing oceanographic conditions. It is not known where the animals went after the 82-83 El Niño, or where the recently observed animals came from. Until the range of this population and the movements of animals in relation to environmental conditions are better documented, no inferences can be drawn regarding trends in abundance of short-finned pilot whales off California, Oregon and Washington. #### **CURRENT AND MAXIMUM NET PRODUCTIVITY RATES** No information on current or maximum net productivity rates is available for short-finned pilot whales off California, Oregon and Washington. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (123) <u>times</u> one half the default maximum net growth rate for cetaceans (½ of 4%) <u>times</u> a recovery factor of 0.40 (for a species of unknown status with a mortality rate CV>0.80; Wade and Angliss 1997), resulting in a PBR of 0.98 short-finned pilot whales per year. ## HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Fishery Information A summary of known fishery mortality and injury for this stock of short-finned pilot whale is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2000-2004 2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates and the relative rarity of short-finned pilot whale entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of this particular species. There have been 11 pilot whale mortalities observed in this fishery since 1990. In 1993, there were 8 mortalities observed, and one each in 1990, 1992, 1997 (in an unpingered net) and 2003. Mean annual takes in Table 1 are based on 2000-2004 2002-2006 data. This results in an average estimate of 1.0 (CV=1.00) short-finned pilot whales taken annually. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type
(Berdegué 2002). Historically, short-finned pilot whales were also killed in squid purse seine operations off Southern California (Miller et al. 1983; Heyning et al. 1994), but these mortalities occurred when pilot whales were still common in the region. An observer program in the squid purse seine fishery was initiated in 2004 and a total of 193 sets have been observed through 2006 without a pilot whale interaction. Observer coverage in this fishery has been less than 10% of all fishing effort. **Table 1.** Summary of available information on the incidental mortality and injury of short-finned pilot whales (California/Oregon/Washington Stock) in commercial fisheries that might take this species. All observed entanglements of pilot whales resulted in the death of the animal. Coefficients of variation for mortality estimates are provided in parentheses; n/a = not available. Mean annual takes are based on $\frac{2000}{2002-2006}$ data unless noted otherwise. | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality | Estimated Annual
Mortality | Mean
Annual Takes
(CV in
parentheses) | |-------------------------------|-----------|-----------------|---------------------------------|-----------------------|-------------------------------|--| | | | 2000 | 22.9% | 0 | 0 | | | | | 2001 | 20.4% | 0 | 0 | | | CA/OR thresher | | 2002 | 22.0% | 0 | 0 | | | shark/swordfish drift gillnet | observer | 2003 | 20.0% | 1 | 5 (1.00) | 1.0 (1.00) | | fishery | | 2004 | 20.6% | 0 | 0 | 1.0 (1.00) | | | | 2005 | 20.9% | 0 | 0 | | | | | 2006 | 18.5% | O | 0 | | | Market squid purse seine | observer | 2004-2006 | <10% | 0 | 0 | 0 | | | | | | | | | | Minimum total annual takes | | | | | | 1.0 (1.00) | #### STATUS OF STOCK The status of short-finned pilot whales off California, Oregon and Washington in relation to OSP is unknown. They have declined in abundance in the Southern California Bight, likely a result of a change in their distribution since the 1982-83 El Niño, but the nature of these changes and potential habitat issues are not adequately understood. Short-finned pilot whales are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. The average annual human-caused mortality from 2000-2004 2002-2006 is one animal, which is exceeds the PBR (0.98), and therefore they are classified as a "strategic" stock under the MMPA. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-233. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ-97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ 03 03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and Chivers, S.J. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. 20p. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Carretta, J. V. and K. A. Forney. 1993. Report of the two aerial surveys for marine mammals in California coastal waters using a NOAA DeHavilland Twin Otter aircraft, March 9-April 7, 1991, February 8-April 6, 1992. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-185. 77p. - Carretta, J. V., K. A. Forney. And J. Barlow 1995. Report of 1993-94 marine mammal surveys conducted within the U.S. Navy Outer Sea Test Range off Southern California. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-217. 90p. - Dohl, T. P., K. S. Norris, R. C. Guess, J. D. Bryant, and M. W. Honig. 1980. Summary of marine mammal and seabird surveys of the Southern California Bight area, 1975-1978. Part II. Cetacea of the Southern California Bight. Final Report to the Bureau of Land Management, NTIS Rep. No. PB81248189. 414p. - Forney, K. A. 1997. Patterns of variability and environmental models of relative abundance for California cetaceans. Ph.D. Dissertation, Scripps Institution of Oceanography, University of California, San Diego. - Forney, K. A. and J. Barlow. 1998. Seasonal patterns in the abundance and distribution of California cetaceans, 1991-92. Mar. Mamm. Sci. 14:460-489. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce NOAA Technical Memorandum, NOAA-TM-NMFS-SWFSC-406. 27p. - Green, G., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, and K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington. Ch. 1. In: Oregon and Washington Marine Mammal and Seabird Surveys. OCS Study 91-0093. Final Report prepared for Pacific OCS Region, Minerals Management Service, U.S. Department of the Interior, Los Angeles, California. - Green, G., R. A. Grotefendt, M. A. Smultea, C. E. Bowlby, and R. A. Rowlett. 1993. Delphinid aerial surveys in Oregon and Washington waters. Final Report prepared for NMFS, National Marine Mammal Laboratory, 7600 Sand Point Way, NE, Seattle, Washington, 98115, Contract #50ABNF200058. - Heyning, J. E., T. D. Lewis and C. D. Woodhouse. 1994. A note on odontocete mortality from fishing gear entanglements off Southern California. Rep. Int. Whal. Commn. Special Issue 15:439-442. - Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, Xiphias gladius, fisheries of the eastern North Pacific Ocean. In: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, Xiphias gladius. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Jones, P. A. and I. D. Szczepaniak. 1992. Report on the seabird and marine mammal censuses conducted for the long-term management strategy (LTMS), August 1990 through November 1991, for the U.S. Environmental Protection Agency, Region IX, San Francisco, July 1992. - Julian, F. and M. Beeson. 1998. Estimates of marine mammal, turtle, and seabird mortality for two California gillnet fisheries: 1990-95. Fishery Bulletin 96:271-284. - Kasuya, O., T. Miyashita, and F. Kasamatsu. 1988. Segregation of two forms of short-finned pilot whales off the Pacific coast of Japan. Sci. Rep. Whales Res. Inst. 39:77-90. - Miller, D. J., M. J. Herder and J. P Scholl. 1983. California marine mammal fishery interaction study, 1979-1981. Administrative Report LJ-83-13C. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038. 233p. - Miyazaki, N. and M. Amano. 1994. Skull morphology of two forms of short-finned pilot whales off the Pacific coast of Japan. Rep. Int. Whaling Commn. 44:499-508. - Polisini, J. M. 1981. A comparison of *Globicephala macrorhyncha* (Gray, 1846) with the pilot whale of the North Pacific Ocean: An analysis of the skull of the broad-rostrum pilot whales of the genus *Globicephala*. Dissertation Abstracts International Vol. 41, No. 08, February 1981, p. 2928-B. - Shane, S. 1994. Occurrence and habitat use of marine mammals at Santa Catalina Island, California from 1983-91. Bull. Southern California Acad. Sci. 93:13-29. - Sosa-Nishizaki, O., R. De la Rosa-Pacheco, R. Castro-Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos
(marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Vojkovich, M. 1998. The California fishery for market squid (*Loligo opalescens*). CalCOFI Rep. 39:55-60. - Wada, S. 1988. Genetic differentiation between forms of short-finned pilot whales off the Pacific coast of Japan. Sci. Rep. Whales Res. Inst. 39:91-101. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. # BAIRD'S BEAKED WHALE (Berardius bairdii): California/Oregon/Washington Stock ## STOCK DEFINITION AND GEOGRAPHIC RANGE Baird's beaked whales are distributed throughout deep waters and along the continental slopes of the North Pacific Ocean (Balcomb 1989). They have been harvested and studied in Japanese waters, but little is known about this species elsewhere (Balcomb 1989). Along the U.S. west coast, Baird's beaked whales have been seen primarily along the continental slope (Figure 1) from late spring to early fall. They have been seen less frequently and are presumed to be farther offshore during the colder water months of November through April. For the Marine Mammal Protection Act (MMPA) stock assessment reports, Baird's beaked whales within the Pacific U.S. Exclusive Economic Zone are divided into two discrete, non-contiguous areas: 1) waters off California, Oregon and Washington (this report), and 2) Alaskan waters. #### POPULATION SIZE Two summer/fall shipboard surveys were conducted within 300 nmi of the coasts of California, Oregon and Washington in 2001 (Barlow and Forney 2007 2003) and 2005 (Forney 2007). Because the distribution of Baird's beaked whale varies and animals probably spend time outside the U.S. Exclusive Economic Zone, a multi-year average abundance estimate **Figure 1.** Baird's beaked whale sightings based on aerial and shipboard surveys off California, Oregon and Washington, 1991-2005 (see Appendix 2 for data sources and information on timing and location of survey effort). Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. is the most appropriate for management within U.S. waters. The 2001-2005 geometric mean abundance estimate for California, Oregon and Washington waters based on the above two ship surveys is $\frac{313}{540}$ (CV=0.55-0.54) Baird's beaked whales (Barlow and Forney 2007 $\frac{1997}{1997}$; Forney 2007). This abundance estimate includes correction factors for the proportion of animals missed, based on a model of their diving behavior, detection distances, and the searching behavior of observers (Barlow 1999). About 96% of all trackline groups are estimated to be seen. $\frac{1}{(g(0))} = 0.90$ for groups of 1.3 animals, $\frac{1}{g(0)} = 1.0$ for larger groups), which are similar to the estimate of $\frac{1}{g(0)} = 0.90$ calculated more recently (Barlow 1999) based on dive interval studies. #### **Minimum Population Estimate** The log-normal 20th percentile of the 2001-2005 weighted average abundance estimate is 203 353 Baird's beaked whales. #### **Current Population Trend** Due to the rarity of sightings of this species on surveys along the U.S. West coast, no information exists regarding trends in abundance of this population. Future studies of trends must take the apparent seasonality of the distribution of Baird's beaked whales into account. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No information on current or maximum net productivity rates is available for this species. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (203 353) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.50 (for a species of unknown status with no fishery mortality; Wade and Angliss 1997), resulting in a PBR of 2.0 3.5 Baird's beaked whales per year. ## **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY**Fishery Information A summary of recent fishery mortality and injury for Baird's beaked whales in this region is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2000-2004 2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates and the relative rarity of Baird's beaked whale entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of this particular species. Mean annual takes in Table 1 are based on 2000-2004 2002-2006 data. This results in an average estimated annual mortality of zero Baird's beaked whales. One Baird's beaked whale was taken in the drift gillnet fishery in 1994. **Table 1.** Summary of available information on the incidental mortality and injury of Baird's beaked whales (California/ Oregon/Washington Stock) in commercial fisheries that might take this species. The single observed entanglement resulted in the death of the animal. Coefficients of variation for mortality estimates are provided in parentheses. Mean annual takes are based on 2000-2004 2002-2006 data unless noted otherwise. | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality | Estimated Annual
Mortality | Mean
Annual Takes
(CV in
parentheses) | |--|------------------|--|---|-----------------------|-------------------------------|--| | CA/OR thresher
shark/swordfish drift
gillnet fishery | observer
data | 2000
2001
2002
2003
2004
2005
2006 | 22.9%
20.4%
22.1%
20.2%
20.6%
20.9%
18.5% | 0
0
0
0
0 | 0
0
0
0
0 | 0 | | Minimum total annual tak | 0 | | | | | | Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). #### Other mortality California coastal whaling operations killed 15 Baird's beaked whales between 1956 and 1970, and 29 additional Baird's beaked whales were taken by whalers in British Columbian waters (Rice 1974). One Baird's beaked whale stranded in Washington state in 2003 and the cause of death was attributed to a ship strike. Additional, unknown levels of injuries and mortalities of Baird's beaked whales may occur as a result of anthropogenic sound, such as military sonars (U.S. Dept. of Commerce and Secretary of the Navy 2001) or other commercial and scientific activities involving the use of air guns. Such injuries or mortalities would rarely be documented, due to the remote nature of many of these activities and the low probability that an injured or dead beaked whale would strand. #### STATUS OF STOCK The status of Baird's beaked whales in California, Oregon and Washington waters relative to OSP is not known, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species, but in recent years questions have been raised regarding potential effects of human-made sounds on deep-diving cetacean species, such as Baird's beaked whales (Richardson et al. 1995). In particular, active sonar has been implicated in the mass stranding of beaked whales in the Mediterranean Sea (Frantzis 1998) and more recently in the Caribbean (U.S. Dept. of Commerce and Secretary of the Navy 2001). They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. Including the one animal that died as the result of a ship strike in 2003, the average annual human-caused mortality in 2000-2004 2002-2006 is 0.2 animals/year. Because recent fishery and human-caused mortality is less than the PBR (2.0 3.5), Baird's beaked whales are not classified as a "strategic" stock under the MMPA. The total fishery mortality and serious injury for this stock is zero and can be considered to be insignificant and approaching zero. - Balcomb, K. C., III. 1989. Baird's beaked whale *Berardius bairdii* Stejneger, 1883: Arnoux's beaked whale *Berardius arnuxii* Duvernoy, 1851. *In*: Ridgway, S. H. and Harrison, R. (eds.), Handbook of Marine Mammals,
Vol. 4., p. 261-288. Academic Press Limited. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ 97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-233. - Barlow, J. 1999. Trackline detection probability for long-diving whales. p. 209-224 *In*: G. W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson (eds.) Marine Mammal Survey and Assessment Methods. A. A. Balkema, Rotterdam. 287 pp. - Barlow, J. and G.A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Frantzis, A. 1998. Does acoustic testing strand whales? Nature 392(5):29. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27p. - Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, Xiphias gladius, fisheries of the eastern North Pacific Ocean. In: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, Xiphias gladius. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - Rice, D. W. 1974. Whales and whale research in eastern North Pacific. p. 170-195 *In:* W. E. Schevill (ed.), The Whale Problem A Status Report. Harvard University Press, Cambridge, MA. - Richardson, W. J., C. R. Greene, Jr., C. I. Malme, and D. H. Thompson. 1995. Marine Mammals and Noise. Academic Press, San Diego. 576 p. - Sosa-Nishizaki, O., R. De la Rosa-Pacheco, R. Castro-Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - U.S. Department of Commerce and Secretary of the Navy. 2001. Joint Interim Report, Bahamas Marine Mammal Stranding Event of 15_16 March 2000. Available from NOAA, NMFS, Office of Protected Resources, Silver Spring, MD. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. ## MESOPLODONT BEAKED WHALES (Mesoplodon spp.): California/Oregon/Washington Stocks ## STOCK DEFINITION AND GEOGRAPHIC RANGE Mesoplodont beaked whales are distributed throughout deep waters and along the continental slopes of the North Pacific Ocean. At least 5 species in this genus have been recorded off the U.S. west coast, but due to the rarity of records and the difficulty in identifying these animals in the field, virtually no species-specific information available (Mead 1989). The six species known to occur in this region are: Blainville's beaked whale (*M. densirostris*), Perrin's beaked whale (M. perrini), Lesser beaked whale (M. peruvianus), Stejneger's beaked whale stejnegeri), Gingko-toothed beaked whale (M. gingkodens), and Hubbs' beaked whale (M. carlhubbsi). Insufficient sighting records exist off the U.S. west coast (Figure 1) to determine any possible spatial or seasonal patterns in the distribution of mesoplodont beaked whales. Until methods of distinguishing these six species are developed, the management unit must be defined to include all *Mesoplodon* stocks in this region. However, in the future, species-level management is desirable, and a high priority should be placed on finding means to obtain species-specific abundance information. For the Marine Mammal Protection Act (MMPA) stock assessment reports, three *Mesoplodon* stocks are defined: 1) all *Mesoplodon* species off California, Oregon and **Figure 1.** *Mesoplodon* beaked whale sightings based on aerial and shipboard surveys off California, Oregon and Washington, 1991-2005 (see Appendix 2 for data sources and information on timing and location of survey effort). Key: ● = *Mesoplodon* spp.; filled triangles = probable and identified *Mesoplodon densirostris*; + = probable *Mesoplodon carlhubbsi*. Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. Washington (this report), 2) M. stejnegeri in Alaskan waters, and 3) M. densirostris in Hawaiian waters. #### POPULATION SIZE Although mesoplodont beaked whales have been sighted along the U.S. west coast on several line transect surveys utilizing both aerial and shipboard platforms, sightings have generally been too rare to produce reliable population estimates, and species identification has been problematic (Barlow and Forney 2007, Forney 2007). Previous abundance estimates have been imprecise and biased downward by an unknown amount because of the large proportion of time mesoplodont beaked whales spend submerged, and because the surveys on which they were based covered only California waters, and thus could not include animals off Oregon/Washington. Furthermore, there were a large number of unidentified beaked whale sightings, which were either Mesoplodon sp. or Cuvier's beaked whales (Ziphius cavirostris). Updated analyses are based on 1) combining data from two surveys conducted within 300 nmi of the coasts of California, Oregon and Washington in 2001 (Barlow and Forney 2007 2003) and 2005 (Forney 2007), 2) whenever possible, assigning unidentified beaked whale sightings to Mesoplodon spp. or Ziphius cavirostris based on written descriptions, size estimates, and 'most probable identifications' made by the observers at the time of the sightings, and 3) estimating a correction factor for animals missed, because they are submerged, based on a model of their diving behavior, detection distances, and the searching behavior of observers (Barlow 1999). About 45% of all trackline groups are estimated to be seen. dive interval data collected for mesoplodont whales in 1993 95 (about 26% of all trackline groups are estimated to be seen). Of the 5 sightings of Mesoplodon made during 2001-2005 surveys [all 5 sightings were made during the 2005 survey] two were identified to the 'probable' species level (one Mesoplodon densirostris and one Mesoplodon carlhubbsi; both seen in 2005). The current estimate of Blainville's beaked abundance is based on this one probable sighting, while the Hubb's beaked whale sighting was not recorded during standard survey effort, and thus, there is no estimate of abundance. An updated estimate of abundance for unidentified mesoplodont beaked whales is also presented, based on 2001-2005 survey effort and sightings. Because their distribution varies and animals probably spend time outside the U.S. Exclusive Economic Zone, a multi-year average abundance estimate is the most appropriate for management within U.S. waters. The abundance of Blainville's beaked whales for California, Oregon, and Washington, based on the geometric mean of 2001-2005 surveys is 603 1,206 (CV=1.16). The abundance estimate for mesoplodont beaked whales of unknown species,
based on the same 2001-2005 surveys is 421 (CV=0.88). The combined estimate of abundance for all species of Mesoplodon beaked whales in California, Oregon, and Washington waters out to 300 nmi is 1,024 (CV=0.77) animals. This estimate does not include sightings of 'unidentified beaked whales' made during 2005, some of which may have been Mesoplodont beaked whales (Forney 2007). #### **Minimum Population Estimate** The minimum population estimate (defined as the log-normal 20th percentile of the abundance estimate) for mesoplodont beaked whales in California, Oregon, and Washington is 576 animals. #### **Current Population Trend** Due to the rarity of sightings of these species on surveys along the U.S. West coast, no information exists regarding possible trends in abundance. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No information on current or maximum net productivity rates is available for mesoplodont beaked whales. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (576) <u>times</u> one half the default maximum net growth rate for cetaceans (½ of 4%) <u>times</u> a recovery factor of 0.50 (for a species of unknown status with no known recent fishery mortality; Wade and Angliss 1997), resulting in a PBR of 5.7 mesoplodont beaked whales per year. ## **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY**Fishery Information There have been no recent observed mortalities of mesoplodont beaked whales in the drift gillnet fishery for swordfish and thresher shark (Table 1). Between 1990-95, there were a total of five Hubb's beaked whales, one Stegneger's beaked whale, two unidentified mesoplodont beaked whales, and three unidentified beaked whales killed in this fishery (Julian and Beeson 1998). Since 1996, there have been no mesoplodont beaked whales observed entangled or killed (Carretta et al. 2005), which coincides with the introduction and use of acoustic pingers into this fishery (Barlow and Cameron 2003). A summary of recent fishery mortality and injury for mesoplodont beaked whales in this region is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2002-2006 data (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates and the relative rarity of mesoplodont beaked whale entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of this group of species. Mean annual takes in Table 1 are based on 2000-2004 2002-2006 data. This results in an average estimated annual mortality of zero mesoplodont beaked whales. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). **Table 1.** Summary of available information on the incidental mortality and injury of *Mesoplodon* beaked whales (California/Oregon/Washington Stocks) in commercial fisheries that might take these species. Mean annual takes are based on 2000 2004 2002-2006 data unless noted otherwise. | Fishery Name | Data Type | Year | Percent
Observer
Coverage | Observed
Mortality | Estimated
Annual
Mortality | Mean
Annual Takes
(CV in
parentheses) | |-------------------------------|-----------|-----------------|---------------------------------|-----------------------|----------------------------------|--| | | | 2000 | 22.9% | 0 | 0 | | | | | 2001 | 20.4% | 0 | 0 | | | CA/OR thresher | | 2002 | 22.1% | 0 | 0 | | | shark/swordfish drift gillnet | observer | 2003 | 20.2% | 0 | 0 | 0 | | fishery | Obscivei | 2004 | 20.6% | 0 | 0 | parentheses) | | | | 2005 | 20.9% | 0 | 0 | | | | | 2006 | 18.5% | 0 | 0 | | | Minimum total annual takes | | 0 | | | | | #### Other mortality Additional, unknown levels of injuries and mortalities of mesoplodont beaked whales may occur as a result of anthropogenic sound, such as military sonars (U.S. Dept. of Commerce and Secretary of the Navy 2001) or other commercial and scientific activities involving the use of air guns. Such injuries or mortalities would rarely be documented, due to the remote nature of many of these activities and the low probability that an injured or dead beaked whale would strand. #### STATUS OF STOCKS The status of mesoplodont beaked whales in California, Oregon and Washington waters relative to OSP is not known, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species, but in recent years questions have been raised regarding potential effects of human-made sounds on deep-diving cetacean species, such as mesoplodont beaked whales (Richardson et al. 1995). In particular, active sonar has been implicated in the mass stranding of beaked whales in the Mediterranean Sea (Frantzis 1998) and more recently in the Bahamas (U.S. Dept. of Commerce and Secretary of the Navy 2001). None of the six species is listed as "threatened" or "endangered" under the Endangered Species Act nor considered "depleted" under the MMPA. Including driftnet mortality only for years after implementation of the Take Reduction Plan (1997-98), the average annual human-caused mortality in 2002-2004 is zero. Because recent mortality is zero, mesoplodont beaked whales are not classified as a "strategic" stock under the MMPA, and the total fishery mortality and serious injury for this stock can be considered to be insignificant and approaching zero. It is likely that the difficulty in identifying these animals in the field will remain a critical obstacle to obtaining species-specific abundance estimates and stock assessments in the future. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ 97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. 1999. Trackline detection probability for long-diving whales. p. 209-224 *In*: G. W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson (eds.) Marine Mammal Survey and Assessment Methods. A. A. Balkema, Rotterdam. 287 pp. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. NOAA Technical Memorandum NMFS, NOAA TM NMFS SWFSC 233. - Barlow, J. and S. Sexton. 1996. The effect of diving and searching behavior on the probability of detecting track line groups, g₀, of long diving whales during line transect surveys. Administrative Report LJ 96 14. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038, USA. 21 p. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center,
8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Frantzis, A. 1998. Does acoustic testing strand whales? Nature 392(5):29. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27p. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fishery Bulletin 96:271-284. - Mead, J. G. 1989. Beaked whales of the genus *Mesoplodon*. *In*: Ridgway, S. H. and Harrison, R. (eds.), Handbook of Marine Mammals, Vol. 4., p. 349-430. Academic Press Limited. - National Marine Fisheries Service, Southwest Fisheries Science Center. Unpublished data. - Richardson, W. J., C. R. Greene, Jr., C. I. Malme, and D. H. Thompson. 1995. Marine Mammals and Noise. Academic Press, San Diego. 576 p. - Sosa-Nishizaki, O., R. De la Rosa-Pacheco, R. Castro-Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - U.S. Department of Commerce and Secretary of the Navy. 2001. Joint Interim Report, Bahamas Marine Mammal Stranding Event of 15_16 March 2000. Available from NOAA, NMFS, Office of Protected Resources, Silver Spring, MD. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. # CUVIER'S BEAKED WHALE (Ziphius cavirostris): California/Oregon/Washington Stock ## STOCK DEFINITION AND GEOGRAPHIC RANGE Cuvier's beaked whales are distributed widely throughout deep waters of all oceans (Heyning 1989). Off the U.S. west coast, this species is the most commonly encountered beaked whale (Figure No seasonal changes in distribution are apparent from stranding records, and morphological evidence is consistent with the existence of a single eastern North population from Alaska to Baja California, Mexico (Mitchell 1968). However, there are currently no agreements international cooperative management of this species. For the Marine Mammal Protection Act (MMPA) stock assessment reports, Cuvier's beaked whales within the Pacific U.S. Exclusive Economic Zone are divided into three discrete, noncontiguous areas: 1) waters off California, Oregon and Washington (this report), 2) Alaskan waters, and 3) Hawaiian waters. #### POPULATION SIZE Although Cuvier's beaked whales have been sighted along the U.S. west coast on several line transect surveys utilizing both aerial and shipboard platforms, sightings have **Figure 1.** Cuvier's beaked whale sightings based on aerial and shipboard surveys off California, Oregon and Washington, 1991-2005 (see Appendix 2, for data sources and information on timing and location of survey effort). Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. been too rare to produce reliable population estimates. Previous abundance estimates have been imprecise and biased downward by an unknown amount because of the large proportion of time this species spends submerged, and because the ship surveys on which they were based covered only California waters, and thus could not observe animals off Oregon/Washington. Furthermore, there were a large number of unidentified beaked whale sightings, which were probably either *Mesoplodon* sp. or Cuvier's beaked whales (*Ziphius cavirostris*). Updated analyses are based on 1) combining data from two surveys conducted within 300 nmi of the coasts of California, Oregon and Washington in 2001 (Barlow and Forney 2007 2003) and 2005 (Forney 2007), 2) whenever possible, assigning unidentified beaked whale sightings to *Mesoplodon* spp. or *Ziphius cavirostris* based on written descriptions, size estimates, and 'most probable identifications' made by the observers at the time of the sightings, and 3) estimating a correction factor for animals missed because they are submerged, based on a model of their diving behavior, detection distances, and the searching behavior of observers (Barlow 1999). An estimated 23% of trackline groups are estimated to be seen. dive-interval data collected for Cuvier's beaked whales in 1993-95 (an estimated 13% of all groups are estimated to be seen). Because animals probably spend time outside the U.S. Exclusive Economic Zone, a multi-year average abundance estimate is the most appropriate for management within U.S. waters. The 2001-2005 geometric mean abundance estimate for California, Oregon and Washington waters based on the above analyses is 2,171 2,830 (CV= 0.75 0.73) Cuvier's beaked whales. #### **Minimum Population Estimate** Based on the above abundance estimate and CV, the minimum population estimate (defined as the log-normal 20th percentile of the abundance estimate) for Cuvier's beaked whales in California, Oregon, and Washington is 1,234 1,629 animals. #### **Current Population Trend** Due to the rarity of sightings of this species on surveys along the U.S. West coast, no information exists regarding trends in abundance of this population. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No information on current or maximum net productivity rates is available for this species. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (1,234 1,629) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.40 (for a species of unknown status with an unknown fishery mortality CV; Wade and Angliss 1997), resulting in a PBR of 40 13 Cuvier's beaked whales per year. ## HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Fishery Information A summary of recent fishery mortality and injury for Cuvier's beaked whales in this region is shown in Table 1. More detailed information on these fisheries is provided in Appendix 1. Mortality estimates for the California drift gillnet fishery are included for the five most recent years of monitoring, 2000–2004–2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). There have been no Cuvier's beaked whales observed entangled in over 4,000 drift gillnet fishery sets since pingers were first used in this fishery in 1996. Prior to 1996, there were a total of 21 Cuvier's beaked whales entangled in approximately 3,300 drift gillnet fishery sets: 1992 (six animals), 1993 (three), 1994 (six) and 1995 (six). A dead stranded Cuvier's beaked whale in 2001 died as the result of an interaction with an unknown entangling net fishery (NMFS, Northwest Regional Office, unpublished stranding data, Brent Norberg, pers. comm.; Jim Rice, Oregon State University, pers. comm.). Mean annual takes in Table 1 are based only on 2000-2004 2002-2006 data. This results in an average estimated annual mortality of 0.2 zero Cuvier's beaked whales. **Table 1.** Summary of available information on the incidental mortality and injury of Cuvier's beaked whales (California/ Oregon/Washington Stock) in commercial fisheries that might take this species. Mean annual takes are based on $\frac{2000-2004}{2002-2006}$ data unless noted otherwise. n/a = not available. | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality +
ReleasedAlive | Estimated Annual
Mortality / Mortality +
Entanglements | Mean
Annual Takes
(CV in
parentheses) | |--|------------------|--|---|--|--|--| | CA/OR thresher
shark/swordfish drift
gillnet fishery | observer
data | 2000
2001
2002
2003
2004
2005
2006 | 22.9%
20.4%
22.1%
20.2%
20.6%
20.9%
18.5% | 0
0
0
0
0 | 0
0
0
0
0 | 0 | | Unknown fishery | Stranding | 2000-2004 | n/a | 4 | ≥ 1 (n/a) | ≥0.2 (n/a) | | Fishery Name | Data Type | Year(s) |
Percent
Observer
Coverage | Observed
Mortality +
ReleasedAlive | Estimated Annual
Mortality / Mortality +
Entanglements | Mean
Annual Takes
(CV in
parentheses) | |---------------------|-----------|---------|---------------------------------|--|--|--| | | | | | | | ≥ 0.2 (n/a) | | Minimum total annua | l takes | | | | | 0 | Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). #### Other mortality Additional, unknown levels of injuries and mortalities of Cuvier's beaked whales may occur as a result of anthropogenic sound, such as military sonars (U.S. Dept. of Commerce and Secretary of the Navy 2001) or other commercial and scientific activities involving the use of air guns. Such injuries or mortalities would rarely be documented, due to the remote nature of many of these activities and the low probability that an injured or dead beaked whale would strand. #### STATUS OF STOCK The status of Cuvier's beaked whales in California, Oregon and Washington waters relative to OSP is not known, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species, but in recent years questions have been raised regarding potential effects of human-made sounds on deep-diving cetacean species, such as Cuvier's beaked whales (Richardson et al. 1995). In particular, active sonar has been implicated in the mass stranding of beaked whales in the Mediterranean Sea (Frantzis 1998) and more recently in the Caribbean (U.S. Dept. of Commerce and Secretary of the Navy 2001). They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. The average annual human-caused mortality in 2000-2004 2002-2006 is 0.2 zero. Because recent human-caused mortality is less than the PBR of 10 animals, Cuvier's beaked whales are not classified as a "strategic" stock under the MMPA. The total fishery mortality and serious injury for this stock is less than 10% of the PBR and thus can be considered to be insignificant and approaching zero. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ-97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. 1999. Trackline detection probability for long-diving whales. p. 209-224 *In*: G. W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson (eds.) Marine Mammal Survey and Assessment Methods. A. A. Balkema, Rotterdam. 287 pp. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. NOAA Technical Memorandum NMFS, NOAA TM NMFS SWFSC 233. - Barlow, J. and S. Sexton. 1996. The effect of diving and searching behavior on the probability of detecting track line groups, g₀, of long diving whales during line transect surveys. Administrative Report LJ 96-14. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038, USA. 21 p. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA1. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30.Frantzis, A. 1998. Does acoustic testing strand whales? Nature 392(5):29. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27p. - Heyning, J. E. 1989. Cuvier's beaked whale *Ziphius cavirostris* G. Cuvier, 1823. pp. 289-308 *In:* Ridgway, S. H. and R. Harrison (eds.), Handbook of Marine Mammals, Vol. 4. Academic Press. - Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - Mitchell, E. 1968. Northeast Pacific stranding distribution and seasonality of Cuvier's beaked whale, *Ziphius cavirostris*. Can. J. Zool. 46:265-279. - Richardson, W. J., C. R. Greene, Jr., C. I. Malme, and D. H. Thompson. 1995. Marine Mammals and Noise. Academic Press, San Diego. 576 p. - Sosa-Nishizaki, O., R. De la Rosa-Pacheco, R. Castro-Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - U.S. Department of Commerce and Secretary of the Navy. 2001. Joint Interim Report, Bahamas Marine Mammal Stranding Event of 15_16 March 2000. Available from NOAA, NMFS, Office of Protected Resources, Silver Spring, MD. Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. ### **PYGMY SPERM WHALE (Kogia breviceps):** California/Oregon/Washington Stock #### STOCK DEFINITION AND **GEOGRAPHIC RANGE** whales Pygmy sperm distributed throughout deep waters and along the continental slopes of the North Pacific and other ocean basins (Ross 1984; Caldwell and Caldwell 1989). Along the U.S. west coast, sightings of this species and of animals identified only as Kogia sp. have been very rare (Figure 1). However, this probably reflects their pelagic distribution, small body size and cryptic behavior, rather than a measure of rarity. Strandings of pygmy sperm whales in this region are known from California, Oregon and Washington (Roest 1970; Caldwell and Caldwell 1989; NMFS, Northwest Region, unpublished data; NMFS, Southwest Region, unpublished data), while strandings of
dwarf sperm whales (Kogia sima) are rare in this region. At-sea sightings in this region have all been either of pygmy sperm whales or unidentified Kogia sp. Available data are insufficient to identify any seasonality in the distribution of pygmy sperm whales, or to delineate possible stock boundaries. For the Marine Mammal Protection Act (MMPA) stock assessment reports, pygmy sperm whales within the Pacific U.S. Exclusive Economic Zone are divided into two discrete, non-contiguous areas: 1) waters off California, Oregon and Washington (this report), and 2) Hawaiian waters. #### POPULATION SIZE Although pygmy sperm whales have been sighted along the U.S. west coast on several line transect surveys utilizing both aerial and shipboard platforms, sightings have been too rare Figure 1. Kogia sightings based on aerial and shipboard surveys off California, Oregon and Washington, 1991-2005 (see Appendix 2 for data sources and information on timing and location of survey effort). Key: ■ = *Kogia breviceps*, $\bullet = Kogia$ spp. Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. to produce reliable population estimates. Previous The most recent abundance estimates of 247 (CV = 1.96) pygmy sperm whales were based on pooled 1996 2001 of 899 (CV=1.00) animals was based on one sighting of an unidentified Kogia during a 1996 ship surveys of California, Oregon, and Washington waters, where there were only two sightings (both in 1996) that could be identified to the genus Kogia (Barlow and Forney 2007 2003). Based on previous sighting surveys and historical stranding data, it is likely that these sightings were of pygmy sperm whales; K. breviceps. The 1996-2001 pooled estimate incorporates a correction factor for animals missed. because they are submerged, based on dive interval data collected for Kogia sima in 1993 95 a model of their diving behavior, detection distances, and the searching behavior of observers (Barlow 1999). About 35%. (about 19% of all trackline groups are estimated to be seen). Because animals probably spend time outside the U.S. Exclusive Economic Zone, a multi year average abundance estimate is the most appropriate for management within U.S. waters. Because no sightings of pygmy sperm whales have been recorded during the two most recent since 1996 and the most recent abundance estimates is >8 years old ship surveys conducted in 2001 (Barlow and Forney 2007 2003) and 2005 (Forney 2007), there is no current estimate of abundance available. The lack of recent sightings likely reflects the cryptic nature of this species (they are detected almost exclusively in extremely calm sea conditions), rather than an absence of animals in the region. #### **Minimum Population Estimate** No current information on abundance is available to obtain a minimum population estimate for pygmy sperm whales. #### **Current Population Trend** Due to the rarity of sightings of this species on surveys along the U.S. West coast, no information exists regarding trends in abundance of this population. #### **CURRENT AND MAXIMUM NET PRODUCTIVITY RATES** No information on current or maximum net productivity rates is available for this species. #### POTENTIAL BIOLOGICAL REMOVAL Because there is no current estimate of minimum abundance, a potential biological removal (PBR) cannot be calculated for this stock. ## **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY** Fishery Information A summary of recent fishery mortality and injury for pygmy sperm whales and unidentified *Kogia*, which may have been pygmy sperm whales, is shown in Table 1. More detailed information on the drift gillnet fishery is provided in Appendix 1. In the California drift gillnet fishery, no mortality of pygmy sperm whales or unidentified *Kogia* was observed during the most recent five years of monitoring, 2000-2004 2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). One pygmy sperm whale was observed killed in the drift gillnet fishery in 1992 and another in 1993. After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates and the rarity of *Kogia* entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of pygmy sperm whales. Mean annual takes in Table 1 are based on 2000-2004 2002-2006 data. This results in an average estimated annual mortality of zero pygmy sperm whales. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). One pygmy sperm whale stranded in California in 2002 with evidence that it died as a result of a shooting (positive metal detector scan). Due to the cryptic and pelagic nature of this species, it is likely that the shooting resulted from an interaction with an unknown entangling net fishery. #### Other mortality This results in an average annual human-caused mortality of 0.2 pygmy sperm whales per year. Additional, unknown levels of injuries and mortalities of pygmy sperm whales may occur as a result of anthropogenic sound, such as military sonars (U.S. Dept. of Commerce and Secretary of the Navy 2001) or other commercial and scientific activities involving the use of air guns. Such injuries or mortalities would rarely be documented, due to the remote nature of many of these activities and the low probability that an injured or dead pygmy sperm whale would strand. #### STATUS OF STOCK The status of pygmy sperm whales in California, Oregon and Washington waters relative to OSP is not known, and there are insufficient data to evaluate potential trends in abundance. No habitat issues are known to be of concern for this species, but in recent years questions have been raised regarding potential effects of human-made sounds on deep-diving cetacean species, such as pygmy sperm whales (Richardson et al. 1995). In particular, active sonar has been implicated in the mass stranding of beaked whales in the Mediterranean Sea (Frantzis 1998) and more recently in the Caribbean (U.S. Dept. of Commerce and Secretary of the Navy 2001). They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. The average annual human-caused mortality for 2000-2004 2002-2006 is 0.2 animals, based on one stranded animal in 2002 that had evidence of gunshot wounds. A PBR cannot be calculated for this stock because there have been no sightings of pygmy sperm whales from the two most recent ship line transect surveys conducted in 2001 and 2005 is no current abundance estimate (Barlow 2003, and Forney 2007). The lack of recent sightings is probably due to a combination of rough sea conditions during these two recent cruises and the cryptic nature of this species. Previous estimates of PBR for this stock have ranged between 1 and 28 pygmy sperm whales (Barlow et al. 1995, Barlow et al. 1997, Forney et al. 2000, Carretta et al. 2003). Recent fishery mortality is zero \geq 0.2 animals annually. Because a PBR cannot be calculated for this stock, recent fishery mortality relative to PBR is unknown. and the total fishery mortality and serious injury for this stock can be considered to be insignificant and approaching zero. Given the range of PBRs for this stock in previous years, the lack observed fishery mortality, and lack of recent information on population size Given the rarity of sightings and fishery interactions in U.S. west coast waters, pygmy sperm whales are not classified as a "strategic" stock under the MMPA. **Table 1.** Summary of available information on the incidental mortality and injury of pygmy sperm whales and unidentified *Kogia* sp. (California/Oregon/Washington Stock) in commercial fisheries that might take this species. Coefficients of variation for mortality estimates are provided in parentheses. Mean annual takes are based on 2000-2004 2002-2006 data unless noted otherwise. | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality
K. breviceps
/Kogia sp. | Estimated Annual
Mortality of K.
breviceps/Kogia sp. | Mean
Annual Takes
(CV in parentheses) | |--|--|--|---|---
--|---| | CA/OR thresher
shark/swordfish drift gillnet
fishery | observer
data | 2000
2001
2002
2003
2004
2005
2006 | 22.9%
20.4%
22.1%
20.2%
20.6%
20.9%
18.5% | 0/0
0/0
0/0
0/0
0/0
0/0 | 0/0
0/0
0/0
0/0
0/0
0/0
0/0 | 0 | | Unknown fishery
interaction | Stranding
(positive metal
detector scan) | 2002 | n/a | I | n/a | ≥0.2 | | Minimum total annual takes | | | | | | ≥0.2 | - Barlow, J., R.L. Brownell, Jr., D.P. DeMaster, K.A. Forney, M.S. Lowry, S. Osmeck, T.J. Ragen, R.R. Reeves, and R.J. Small. 1995. U.S. Pacific Marine Mammal Stock Assessments. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-219. 162p. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ 97 11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J., K.A. Forney, P.S. Hill, R.L. Brownell, Jr., J.V. Carretta, D.P. DeMaster, F. Julian, M.S. Lowry, T. Ragen, and R.R. Reeves. 1997. U.S. Pacific Marine Mammal Stock Assessments: 1996. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-248. 223p. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. NOAA Technical Memorandum NMFS, NOAA-TM-NMFS-SWFSC-233. - Barlow, J. and S. Sexton. 1996. The effect of diving and searching behavior on the probability of detecting trackline groups, g₀, of long diving whales during line transect surveys. Administrative Report LJ 96 14. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038, USA. 21 p. - Barlow, J. 1999. Trackline detection probability for long-diving whales. p. 209-224 *In*: G. W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson (eds.) Marine Mammal Survey and Assessment Methods. A. A. Balkema, Rotterdam. 287 pp. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Caldwell, D. K. and M. C. Caldwell. 1989. Pygmy sperm whale *Kogia breviceps* (de Blainville, 1838): Dwarf sperm whale *Kogia simus* Owen, 1866. pp. 235-260 *In:* Ridgway, S. H. and R. Harrison (eds.), Handbook of Marine Mammals, Vol. 4. Academic Press. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V., K.A. Forney, M.M. Muto, J. Barlow, J. Baker, and M. Lowry. 2004. U.S. Pacific Marine Mammal Stock Assessments: 2003. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-358. 291p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Forney, K.A., J. Barlow, M.M. Muto, M. Lowry, J. Baker, G. Cameron, J. Mobley, C. Stinchcomb, and J.V. Carretta. 2000. U.S. Pacific Marine Mammal Stock Assessments: 2000. NOAA Technical Memorandum, NOAA-TM-NMFS-SWFSC-300. 230p. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce NOAA Technical Memorandum, NOAA-TM-NMFS-SWFSC-406. 27 p. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - NMFS, Southwest Region, 501 West Ocean Blvd, Long Beach, CA 90802_4213. - Oregon Department of Fish and Game, Unpublished data. - Richardson, W. J., C. R. Greene, Jr., C. I. Malme, and D. H. Thompson. 1995. Marine Mammals and Noise. Academic Press, San Diego. 576 p. - Roest, A. I. 1970. *Kogia simus* and other cetaceans from San Luis Obispo County, California. J. Mammal. 51:410-417. - Ross, G. J. B. 1984. The smaller cetaceans of the south east coast of southern Africa. Ann. Cape Prov. Mus. Nat. Hist. 15:173-410. - Sosa-Nishizaki, O., R. De la Rosa-Pacheco, R. Castro-Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - U.S. Department of Commerce and Secretary of the Navy. 2001. Joint Interim Report, Bahamas Marine Mammal Stranding Event of 15_16 March 2000. Available from NOAA, NMFS, Office of Protected Resources, Silver Spring, MD. ### DWARF SPERM WHALE (Kogia sima): California/Oregon/Washington Stock ## STOCK DEFINITION AND GEOGRAPHIC RANGE Dwarf sperm whales are distributed throughout deep waters and along the continental slopes of the North Pacific and other ocean basins (Caldwell and Caldwell 1989; Ross 1984). This species was only recognized as being distinct from the pygmy sperm whale in 1966 (Handley, 1966), and early records for the two species are confounded. Along the U.S. west coast, no at-sea sightings of this species have been reported; however, this may be partially a reflection of their pelagic distribution, small body size and cryptic behavior. A few sightings of animals identified only as Kogia sp. have been reported (Figure 1), and some of these may have been dwarf sperm whales. At least five dwarf sperm whales stranded in California between 1967 and 2000 (Roest 1970; Jones 1981; J. Heyning, pers. comm.; NMFS, Southwest Region, unpublished data), and stranding is reported for western Canada (Nagorsen and Stewart 1983). It is unclear whether records of dwarf sperm whales are so rare because they are not regular inhabitants of this region, or merely because of their cryptic habits and offshore distribution. Available data are insufficient to identify any seasonality in the distribution of dwarf sperm whales, or to delineate possible stock boundaries. For the Marine Mammal Protection Act (MMPA) stock assessment **Figure 1.** *Kogia* sightings based on aerial and shipboard surveys off California, Oregon and Washington, 1991- 2001 (see Appendix 2 for data sources and information on timing and location of survey effort). Key: ■ = *Kogia breviceps*; ● = *Kogia* spp. Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. reports, dwarf sperm whales within the Pacific U.S. Exclusive Economic Zone are divided into two discrete, non-contiguous areas: 1) waters off California, Oregon and Washington (this report), and 2) Hawaiian waters. #### POPULATION SIZE No information is available to estimate the population size of dwarf sperm whales off the U.S. west coast, as no sightings of this species have been documented despite numerous vessel surveys of this region (Barlow 1995; Barlow and Gerrodette 1996; Barlow 2003 Barlow and Forney 2007; Forney 2007). Based on previous sighting surveys and historical stranding data, it is likely that recent ship survey sightings were of pygmy sperm whales; *K. breviceps*. #### **Minimum Population Estimate** No information is available to obtain a minimum population estimate for dwarf sperm whales. #### **Current Population Trend** Due to the rarity of records for this species along the U.S. West coast, no information exists regarding trends in abundance of this population. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No information on current or maximum net productivity rates is available for
this species. #### POTENTIAL BIOLOGICAL REMOVAL Based on this stock's unknown status and growth rate, the recovery factor (F_r) is 0.5, and $\frac{1}{2}R_{max}$ is the default value of 0.02. However, due to the lack of abundance estimates for this species, no potential biological removal (PBR) can be calculated. ## ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Fishery Information In the California drift gillnet fishery, no mortality of dwarf sperm whales or unidentified *Kogia* was observed during the most recent five years of monitoring, 2000-2004 2002-2006 (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, because of interannual variability in entanglement rates and the rarity of *Kogia* entanglements, additional years of data will be required to fully evaluate the effectiveness of pingers for reducing mortality of dwarf sperm whales. Mean annual takes in Table 1 are based on 2000-2004 2002-2006 data. This results in an average estimated annual mortality of zero dwarf sperm whales. Similar drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which has increased from two vessels in 1986 to 29 vessels in 1992 (Sosa-Nishizaki et al. 1993). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). #### STATUS OF STOCK The status of dwarf sperm whales in California, Oregon and Washington waters relative to OSP is not known, and there are insufficient data to evaluate potential trends in abundance. No habitat issues are known to be of concern for this species, but in recent years questions have been raised regarding potential effects of human-made sounds on deep-diving cetacean species, such as dwarf sperm whales (Richardson et al. 1995). In particular, active sonar has been implicated in the mass stranding of beaked whales in the Mediterranean Sea (Frantzis 1998) and more recently in the Caribbean (U.S. Dept. of Commerce and Secretary of the Navy 2001). They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. Given that this species rarely occurs off the U.S. west coast and current fishery mortality is zero, dwarf sperm whales off California, Oregon and Washington are not classified as a "strategic" stock under the MMPA. **Table 1.** Summary of available information on the incidental mortality and injury of dwarf sperm whales and unidentified *Kogia* sp. (California/Oregon/Washington Stock) in commercial fisheries that might take this species. Coefficients of variation for mortality estimates are provided in parentheses. Mean annual takes are based on 2000 2004 2002-2006 data unless noted otherwise. | Fishery Name | Data Type | Year(s) | Percent
Observer
Coverage | Observed
Mortality
K. breviceps
/Kogia sp. | Estimated Annual
Mortality of K.
breviceps/Kogia sp. | Mean
Annual Takes
(CV in
parentheses) | |--|------------------|--|---|---|--|--| | CA/OR thresher
shark/swordfish drift
gillnet fishery | observer
data | 2000
2001
2002
2003
2004
2005
2006 | 22.9%
20.4%
22.1%
20.2%
20.6%
20.9%
18.5% | 0/0
0/0
0/0
0/0
0/0
0/0
0/0 | 0/0
0/0
0/0
0/0
0/0
0/0
0/0 | 0 | | Minimum total annual tak | es | | | | | 0 | - Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991-2001. Southwest Fisheries Science Center Administrative Report LJ-03-03. Available from SWFSC, 8604 La Jolla Shores Drive, La Jolla, CA 92037. - Barlow, J. and T. Gerrodette. 1996. Abundance of cetaceans in California waters based on 1991 and 1993 ship surveys. NOAA Technical Memorandum NMFS, NOAA-TM-NMFS-SWFSC-233. - Barlow, J. and S. Sexton. 1996. The effect of diving and searching behavior on the probability of detecting track line groups, g_0 , of long diving whales during line transect surveys. Administrative Report LJ-96-14. Available from NMFS, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, California, 92038, USA. 21 p. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Caldwell, D. K. and M. C. Caldwell. 1989. Pygmy sperm whale Kogia breviceps (de Blainville, 1838): Dwarf sperm whale Kogia simus Owen, 1866. pp. 235-260 In: Ridgway, S. H. and R. Harrison (eds.), Handbook of Marine Mammals, Vol. 4. Academic Press. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27p. - Handley, C. O. Jr. 1966. A synopsis of the genus Kogia (pygmy sperm whales). pp. 62-69 In: K. S. Norris (ed.), Whales, dolphins and porpoises. University of California Press, Berkeley. - Jones, R. E. 1981. Food habits of smaller marine mammals from northern California. Proc. California Acad. Sci. 42:409-433. - Julian, F. and M. Beeson. 1998. Estimates of mammal, turtle and bird mortality for two California gillnet fisheries: 1990-1995. Fish. Bull. 96:271-284. - Nagorsen, D. W. and G. E. Stewart. 1983. A dwarf sperm whale (Kogia simus) from the Pacific coast of Canada. J. Mamm. 64:505-506. - Richardson, W. J., C. R. Greene, Jr., C. I. Malme, and D. H. Thompson. 1995. Marine Mammals and Noise. Academic Press, San Diego. 576 p. - Roest, A. I. 1970. Kogia simus and other cetaceans from San Luis Obispo County, California. J. Mammal. 51:410-417. - Ross, G. J. B. 1984. The smaller cetaceans of the south east coast of southern Africa. Ann. Cape Prov. Mus. Nat. Hist. 15:173-410. - Sosa-Nishizaki, O., R. De la Rosa-Pacheco, R. Castro-Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (Xiphias gladius) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - U.S. Department of Commerce and Secretary of the Navy. 2001. Joint Interim Report, Bahamas Marine Mammal Stranding Event of 15_16 March 2000. Available from NOAA, NMFS, Office of Protected Resources, Silver Spring, MD. # SPERM WHALE (*Physeter macrocephalus*): California/Oregon/Washington Stock #### STOCK DEFINITION AND GEOGRAPHIC
RANGE Sperm whales are widely distributed across the entire North Pacific and into the southern Bering Sea in summer but the majority are thought to be south of 40°N in winter (Rice 1974; Rice 1989; Gosho et al. 1984; Miyashita et al. 1995). For management, the International Whaling Commission (IWC) had divided the North Pacific into two management regions (Donovan 1991) defined by a zigzag line which starts at 150°W at the equator, is 160°W between 40-50°N, and ends up at 180°W north of 50°N; however, the IWC has not reviewed this stock boundary in many years (Donovan 1991). Sperm whales are found yearround in California waters (Dohl et al. 1983; Barlow 1995; Forney et al. 1995), but they reach peak abundance from April through mid-June and from the end of August through mid-November (Rice 1974). They were seen in every season except winter (Dec.-Feb.) in Washington and Oregon (Green et al. 1992). Of 176 sperm whales that were marked with Discovery tags off southern California in winter 1962-70, only three recovered by whalers: one off northern California in June, one off Washington in June, and another far off British Columbia in April (Rice 1974). Recent summer/fall surveys in the eastern tropical Pacific (Wade and Gerrodette 1993) show that although sperm whales are widely distributed in the tropics, their relative abundance tapers off markedly westward towards the middle of the tropical Pacific (near the IWC stock **Figure 1.** Sperm whale sighting locations based on aerial and shipboard surveys off California, Oregon, and Washington, 1991-2005. Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. See Appendix 2 for data sources and information on timing and location of survey effort. boundary at 150°W) and tapers off northward towards the tip of Baja California. The structure of sperm whale populations in the eastern tropical Pacific is not known, but the only photographic matches of known individuals from this area have been between the Galapagos Islands and coastal waters of South America (Dufault and Whitehead 1995) and between the Galapagos Islands and the southern Gulf of California (Jaquet et al. 2003), suggesting that the eastern tropical animals constitute a distinct stock. A recent survey designed specifically to investigate stock structure and abundance of sperm whales in the northeastern temperate Pacific revealed no apparent hiatus in distribution between the U.S. EEZ off California and areas farther west, out to Hawaii (Barlow and Taylor 2005). Recent analyses of genetic relationships of animals in the eastern Pacific found that mtDNA and microsatellite DNA of animals sampled in the California Current is significantly different from animals sampled further offshore and that genetic differences appeared larger in an east-west direction than in a north-south direction (Mesnick et al. 1999). For the Marine Mammal Protection Act (MMPA) stock assessment reports, sperm whales within the Pacific U.S. EEZ are divided into three discrete, non-contiguous areas: 1) California, Oregon and Washington waters (this report), 2) waters around Hawaii, and 3) Alaska waters. #### POPULATION SIZE Barlow and Taylor (2001) estimated 1,407 (CV=0.39) sperm whales along the coasts of in California, Oregon, and Washington waters during summer/fall based on pooled 1993 and 1996 ship line transect surveys within 300 nmi of the coast in 1993 and 1996 and Barlow 2003 and Forney (2007) estimated 1,634 2,593 (CV=0.57 0.30) sperm whales from a survey of the same area in 2001. A 2005 survey of this area resulted in an abundance estimate of 3,140 (CV=0.40) whales, which is corrected for diving animals not seen during surveys (Forney 2007). The most recent estimate of abundance for this stock is the geometric mean of the 2001 and 2005 summer/autumn ship survey estimates, or 2,265 2,853 (CV=0.34-0.25) sperm whales. A large 1982 abundance estimate for the entire eastern North Pacific (Gosho et al. 1984) was based on a CPUE method which is no longer accepted as valid by the International Whaling Commission. A combined visual and acoustic line-transect survey conducted in the eastern temperate North Pacific in spring 1997 resulted in estimates of 26,300 (CV=0.81) sperm whales based on visual sightings, and 32,100 (CV=0.36) based acoustic detections and visual group size estimates (Barlow and Taylor 2005). However, it is not known whether any or all of these animals routinely enter the U.S. EEZ. In the eastern tropical Pacific, the abundance of sperm whales has been estimated as 22,700 (95% C.I.=14,800-34,600; Wade and Gerrodette 1993), but this area does not include areas where sperm whales are taken by drift gillnet fisheries in the U.S. EEZ and there is no evidence of sperm whale movements from the eastern tropical Pacific to the U.S. EEZ. Barlow and Taylor (2001) also estimated 1,640 (CV=0.33) sperm whales off the west coast of Baja California, but again there is no evidence for interchange between these animals and those off California, Oregon and Washington. Clearly, large populations of sperm whales exist in waters that are within several thousand miles west and south of the California, Oregon, and Washington region that is covered by this report; however, there is no evidence of sperm whale movements into this region from either the west or south and genetic data suggest that mixing to the west is extremely unlikely. There **is** limited evidence of sperm whale movement from California to northern areas off British Columbia, but there are no abundance estimates for this area. The most precise and recent estimate of sperm whale abundance for this stock is therefore 2,265 2,853 (CV=0.34-0.25) animals from the ship surveys conducted in 2001 (Barlow 2003 and Forney 2007) and 2005 (Forney 2007). This estimate is corrected for diving animals not seen during surveys. #### **Minimum Population Estimate** The minimum population estimate for sperm whales is taken as the lower 20th percentile of the log-normal distribution of abundance estimated from the 2001-2005 summer/fall ship surveys off California, Oregon and Washington (Barlow 2003 and Forney 2007; Forney 2007) or approximately 1,719 2,326. #### **Current Population Trend** Sperm whale abundance appears to have been rather variable off California between 1979/80 and 1996 [1991] (Barlow 1994; Barlow 1997) and between 1991 and 2005 (Barlow and Forney 2007). The last two estimates (for 2001 and 2005) are the highest estimates, but there has been no statistical analysis to detect trends in abundance. but does not show any obvious trends. Although the population in the eastern North Pacific is expected to have grown since large-scale pelagic whaling stopped in 1980, the possible effects of large unreported catches are unknown (Yablokov 1994) and the ongoing incidental ship strikes and gillnet mortality make this uncertain. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES There are no published estimates of the growth rate for any sperm whale population (Best 1993). #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for the California portion of this stock is calculated as the minimum population size ($\frac{1,719}{2,326}$) times one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$ of 4%) times a recovery factor of 0.1 0.2 (the default value for an endangered species for a stock with $N_{min} > 1,500$, unknown population trend, and abundance estimate $CV \le 0.50$; Taylor et al. 2003), resulting in a PBR of $\frac{3.4}{9.3}$. #### **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY** ## [Information on historic whaling has been moved to the Status of Stock section.] Historic Whaling Between 1800 and 1909, about 60,842 sperm whales were estimated taken in the North Pacific (Best 1976). The reported take of North Pacific sperm whales by commercial whalers between 1947 and 1987 totaled 258,000 (C. Allison, pers. comm.). Ohsumi (1980) lists an additional 28,198 sperm whales taken mainly in coastal whaling operations from 1910 to 1946. Based on the massive under reporting of Soviet catches, Brownell et al. (1998) estimate that about 89,000 whales were additionally taken by the Soviet pelagic whaling fleet between 1949 and 1979. The Japanese coastal operations apparently also under reported catches by an unknown amount (Kasuya 1998). Thus a total of at least 436,000 sperm whales were taken between 1800 and the end of commercial whaling for this species in 1987. Of this grand total, an estimated 33,842 were taken by Soviet and Japanese pelagic whaling operations in the eastern North Pacific from the longitude of Hawaii to the U.S. West coast, between 1961 and 1976 (Allen 1980, IWC statistical Areas II and III), and 965 were reported taken in land based U.S. West coast whaling operations between 1947 and 1971 (Ohsumi 1980). In addition, 13 sperm whales were taken by shore whaling stations in California between 1919 and 1926 (Clapham et al. 1997). There has been a prohibition on taking sperm whales in the North Pacific since 1988, but large scale pelagic whaling stopped earlier, in 1980. #### **Fishery Information** The offshore drift gillnet fishery is the only fishery that is likely to take sperm whales from this stock. Detailed information on this fishery is provided in Appendix 1. A summary of known fishery mortality and injury for this stock of sperm whales from 2000 2004 2002-2006 is given in Table 1. After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). However, two sperm whales have been observed taken in nets with pingers (1996 and 1998). Because sperm whale entanglement is rare and because those nets which took sperm whales did not use the full mandated complement
of pingers, it is difficult to evaluate whether pingers have any effect on sperm whale entanglement in drift gillnets. One sperm whale stranded dead in 2004 with 5 to 6-inch mesh nylon netting found in its stomach (NMFS Southwest Regional Office, unpublished data). The fishery source of this netting is unknown. Mean annual takes for this fishery (Table 1) are based on 2000 2004 2002-2006 data (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). This results in an average estimate of 0.2 (CV = not available) sperm whale mortalities per year. **Table 1.** Summary of available information on the incidental mortality and injury of sperm whales (CA/OR/WA stock) for commercial fisheries that might take this species (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b). n/a indicates that data are not available. Mean annual takes are based on 2000-2004 2002-2006 data unless noted otherwise. | Fishery Name | Year(s) | Data
Type | Percent
Observer
Coverage | Observed
mortality (and
injury in
parentheses) | Estimated
mortality (CV
in
parentheses) | Mean annual
takes (CV in
parentheses) | |-----------------------|------------------------|--------------|---------------------------------|---|--|---| | | 2000 | | 22.9% | 0 | 0 | | | | 2001 | | 20.4% | 0 | 0 | | | CA/OR thresher | 2002 | | 22.1% | 0 | 0 | | | shark/swordfish | 2003 | observer | 20.2% | 0 | 0 | 0 (n/a) | | drift gillnet fishery | 2004 | | 20.6% | 0 | 0 | | | | 2005 | | 20.9% | 0 | 0 | | | | 2006 | | 18.5% | 0 | 0 | | | Unknown fishery | 2000 2004
2002-2006 | stranding | n/a | 1 | ≥1 | ≥0.2 | | Total annual takes | • | | • | | | ≥0.2 (n/a) | Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). #### **Ship Strikes** No sperm whale mortalities have been attributed to ship strikes during the period 2000 2004 2002-2006. #### STATUS OF STOCK The only estimate of the status of North Pacific sperm whales in relation to carrying capacity (Gosho et al. 1984) is based on a CPUE method which is no longer accepted as valid. Whaling removed at least 436,000 sperm whales from the North Pacific between 1800 and the end of commercial whaling for this species in 1987 (Best 1976; Ohsumi 1980; Brownell 1998; Kasuya 1998). Of this total, an estimated 33,842 were taken by Soviet and Japanese pelagic whaling operations in the eastern North Pacific from the longitude of Hawaii to the U.S. West coast, between 1961 and 1976 (Allen 1980, IWC statistical Areas II and III), and approximately 1,000 were reported taken in land-based U.S. West coast whaling operations between 1919 and 1971 (Ohsumi 1980; Clapham et al. 1997). There has been a prohibition on taking sperm whales in the North Pacific since 1988, but large-scale pelagic whaling stopped earlier, in 1980. As a result of this whaling, & sperm whales are formally listed as "endangered" under the Endangered Species Act (ESA), and consequently the California to Washington stock is automatically considered as a "depleted" and "strategic" stock under the MMPA. The annual rate of kill and serious injury (0.2 per year) is less than the calculated PBR for this stock (3.4 9.3). Total fishery takes human-caused mortality is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and may not be approaching zero mortality and serious injury rate. Increasing levels of anthropogenic sound in the world's oceans has been suggested to be a habitat concern for whales, particularly for deep-diving whales like sperm whales that feed in the ocean's "sound channel". - Allison, C. International Whaling Commission. The Red House, 135 Station Road, Impington, Cambridge, UK CB4 9NP. - Allen, K. R. 1980. Size distribution of male sperm whales in the pelagic catches. Rep. Int. Whal. Commn. Special Issue 2:51-56. - Barlow, J. 1994. Abundance of large whales in California coastal waters: a comparison of ship surveys in 1979/80 and in 1991. Rept. Int. Whal. Commn. 44:399-406. - Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ-97-11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. and B. L. Taylor. 2001. Estimates of large whale abundance off California, Oregon, Washington, and Baja California based on 1993 and 1996 ship surveys. Administrative Report LJ-01-03 available from Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 12p. - Barlow, J., R. W. Baird, J. E. Heyning, K. Wynne, A. M. Manville, II, L. F. Lowry, D. Hanan, J. Sease, and V. N. Burkanov. 1994. A review of cetacean and pinniped mortality in coastal fisheries along the - west coast of the U.S. and Canada and the east coast of the Russian Federation. Rep. Int. Whal. Commn, Special Issue 15:405-425. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J., K. A. Forney, P. S. Hill, R. L. Brownell, Jr., J. V. Carretta, D. P. DeMaster, F. Julian, M. S. Lowry, T. Ragen, and R. R. Reeves. 1997. U.S. Pacific Marine Mammal Stock Assessments: 1996. U.S. Dep. Commer., NOAA Tech. Memo. NMFS SWFSC 248. 223p. - Barlow, J. and B.L. Taylor. 2005. Estimates of sperm whale abundance in the northeastern temperate Pacific from a combined acoustic and visual survey. Marine Mammal Science 21(3):429-445. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Best, P. B. 1976. A review of world sperm whale stocks. Paper ACMRR/MM/SC/8 Rev. 1, FAO Scientific Consultation of Marine Mammals, Bergen, Norway. - Best, P. B. 1993. Increase rates in severely depleted stocks of baleen whales. ICES J. Mar. Sci. 50:169-186. - Brownell, R. L., Jr., A. V. Yablokov and V. A. Zemmsky. 1998. USSR pelagic catches of North Pacific sperm whales, 1949-1979: Conservation implications. Paper SC/50/CAWS27 presented to the International Whaling Commission, June 1998 (unpublished). - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002.
Marine Fisheries Review 66(2):21-30. - Clapham, P. J., S. Leatherwood, I. Szczepaniak, and R. L. Brownell, Jr. 1997. Catches of humpback and other whales from shore stations at Moss Landing and Trinidad, California, 1919-1926. Marine Mammal Science 13(3):368-394. - Cordaro, J. Southwest Region, NMFS, 501 West Ocean Blvd, Long Beach, CA 90802_4213. - Dohl, T. P., R. C. Guess, M. L. Duman, and R. C. Helm. 1983. Cetaceans of central and northern California, 1980-83: Status, abundance, and distribution. Final Report to the Minerals Management Service, Contract No. 14-12-0001-29090. 284p. - Donovan, G. P. 1991. A review of IWC stock boundaries. Rept. Int. Whal. Commn., Special Issue 13:39-68 - Dufault, S. and H. Whitehead. 1995. The geographic stock structure of female and immature sperm whales in the South Pacific. Rep. Int. Whal. Commn. 45:401-405. - Forney, K. A., J. Barlow, and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K.A., J. Barlow, M.M. Muto, M. Lowry, J. Baker, G. Cameron, J. Mobley, C. Stinchcomb, and J.V. Carretta. 2000. U.S. Pacific Marine Mammal Stock Assessments: 2000. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-300. 276p. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27p. - Gosho, M. E., D. W. Rice, and J. M. Breiwick. 1984. The sperm whale. Mar. Fish. Rev. 46(4):54-64. - Green, G. A., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington, 1989-1990. Ch. 1 <u>In:</u> J. J. Brueggeman (ed.). <u>Oregon and Washington Marine Mammal and Seabird Surveys</u>. Minerals Management Service Contract Report 14-12-0001-30426. - Hanan, D. A. 1986. California Department of Fish and Game coastal marine mammal study, annual report for the period July 1, 1983 June 30, 1984. Admin. Rept. LJ-86-16 available from Southwest Fisheries Science Center, P.O. Box 271, La Jolla, CA. 55pp. - Hanan, D. A., D. B. Holts, and A. L. Coan, Jr. 1993. The California drift gill net fishery for sharks and swordfish, 1981-82 through 1990-91. Calif. Dept. Fish and Game Fish. Bull. No. 175. 95pp. - Heyning, J. E., and T. D. Lewis. 1990. Fisheries interactions involving baleen whales off southern California. Rep. int. Whal. Commn. 40:427-431. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 pp. - Jaquet, N., D. Gendron, and A. Coakes. 2003. Sperm whales in the Gulf of California: residency, movements, behavior, and the possible influence of variation in food supply. Marine Mammal Science 19 (3): 545–562 - Julian, F. 1997. Cetacean mortality in California gill net fisheries: Preliminary estimates for 1996. Paper SC/49/SM02 presented to the International Whaling Commission, September 1997 (unpublished). 13 pp. - Julian, F. and M. Beeson. 1998. Estimates of marine mammal, turtle, and seabird mortality for two California gillnet fisheries: 1990-95. Fishery Bulletin 96:271-284. - Kasuya, T. 1998. Evidence of statistical manipulations in Japanese coastal sperm whale fishery. Paper SC/50/CAWS10 presented to the International Whaling Commission, June 1998 (unpublished). - Leatherwood, S., K. Goodrich, A. L. Kinter, and R. M. Truppo. 1982. Respiration patterns and 'sightability' of whales. Rep. Int. Whal. Commn. 32:601-613. - Mesnick, S. L., B. L. Taylor, B. Nachenberg, A. Rosenberg, S. Peterson, J. Hyde, and A. E. Dizon. 1999. Genetic relatedness within groups and the definition of sperm whale stock boundaries from the coastal waters off California, Oregon and Washington. Admin. Rep. LJ-99-12. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA. 10 pp. - Miyashita, T., H. Kato, and T. Kasuya (Eds.). 1995. Worldwide map of cetacean distribution based on Japanese sighting data. Volume 1. National Research Institute of Far Seas Fisheries, Shizuoka, Japan. 140pp. - Ohsumi, S. 1980. Catches of sperm whales by modern whaling in the North Pacific. Rep. Int. Whal. Commn. Special Issue 2: 11-18. - Rice, D.W. 1974. Whales and whale research in the eastern North Pacific. pp. 170-195 <u>In</u>: W.E. Schevill (ed.). <u>The Whale Problem: A Status Report</u>. Harvard Press, Cambridge, MA. - Rice, D. W. 1989. Sperm whale <u>Physeter macrocephalus</u>, Linnaeus 1758. pp. 177-233 <u>In</u>: S. H. Ridgway and R. J. Harrison (eds.). <u>Handbook of Marine Mammals</u>, Vol. 4. Academic Press, London. - Sosa-Nishizaki, O., R. De la Rosa Pacheco, R. Castro Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Taylor, B.L., M. Scott, J. Heyning, and J. Barlow. 2003. Suggested guidelines for recovery factors for endangered marine mammals. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-354. 6p. Wade, P. R. and T. Gerrodette. 1993. Estimates of cetacean abundance and distribution in the eastern tropical Pacific. Rept. Int. Whal. Commn. 43:477-493. # HUMPBACK WHALE (Megaptera novaeangliae): California/Oregon/Washington Stock ## STOCK DEFINITION AND GEOGRAPHIC RANGE Although the International Whaling Commission (IWC) only considered one stock (Donovan 1991), there is now good evidence for multiple populations of humpback whales in the North Pacific (Johnson and Wolman 1984; Baker et al. 1990). Humpback whales in the North Pacific feed in coastal waters from California to Russia and in the Bering Sea. They migrate south to wintering destinations off Mexico, Central America, Hawaii, southern Japan, and the Philippines. Mitochondrial and nuclear genetic markers show that considerable structure exists in humpback whale populations in the North Pacific (Baker et al. 1998). Significant levels of mitochondrial and nuclear genetic differences were found between central California and Southeast Alaska feeding areas (Baker et al. 1998). Mitochondrial genetic differences are also found between feeding area in the Atlantic (Palsboll et al. 1995). The genetic exchange rate between California and Alaska is estimated to be less than 1 female per generation (Baker 1992). Two breeding areas (Hawaii and coastal Mexico) showed fewer genetic differences than did the two feeding areas (Baker 1992). Individually identified whales have been found to move between winter breeding areas in Hawaii and Mexico (Baker et al. 1990). There have been no individual matches between 597 humpbacks photographed in California and 617 humpbacks photographed in Alaska (Calambokidis et al. 1996). Only two of the 81 whales photographed in British Columbia have matched with a California catalog (Calambokidis et al. 1996), indicating that the U.S./Canada border is an approximate geographic boundary between feeding populations. Waters off northern Washington may be between area of mixing the an **Figure 1.** Humpback whale sightings based on shipboard surveys off California, Oregon, and Washington, 1991-2005. Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined. See Appendix 2 for data sources and information on timing and location of survey effort. California/Oregon/Washington stock and a southern British Columbia stock. For humpback whales, maternally directed fidelity to specific feeding areas within an ocean basin appears to be so strong that genetic differences have evolved in both the Atlantic, where there is a single breeding area, and in the Pacific, where there are multiple breeding areas. Because fidelity appears to be greater in feeding areas than in breeding areas, the stock structure of humpback whales is defined based on feeding areas. For the Marine Mammal Protection Act (MMPA) stock assessment reports, the California/Oregon/Washington Stock is defined to include humpback whales that feed off the west coast of the United States. The winter migratory destination of this stock is primarily in coastal waters of Mexico and Central America. Two other stocks are recognized in the U.S. MMPA stock assessment reports: the Central North Pacific Stock (with feeding areas from Southeast Alaska to the Alaska Peninsula) and the Western North Pacific Stock (with feeding areas from the Aleutian Islands, the Bering Sea, and Russia). #### POPULATION SIZE Based on whaling statistics, the pre-1905 population of humpback whales in the North Pacific was estimated to be 15,000 (Rice 1978), but this population was reduced by whaling to approximately 1,200 by 1966 (Johnson and Wolman 1984). The North Pacific total now almost certainly exceeds 6,000 humpback whales (Calambokidis et al. 1997). Estimates of the abundance of the eastern Pacific stock of humpback whales were made by aerial survey (Dohl 1983; Forney et al. 1995) and ship surveys (Barlow 1995), but those estimates are now over 9 years old and the aerial estimates did not include correction factors for diving whales that would be missed. More recent estimates are available from ship surveys and mark recapture studies. Barlow and Forney (2007) (2003) estimated 1,109 (CV=0.36 0.22) humpbacks in California, Oregon, and Washington waters based on summer/fall ship line-transect surveys in 2001. Forney (2007) estimated 1,769 (CV=0.16) humpbacks in the same region based on a 2005 summer/fall ship line-transect survey, which included additional fine-scale coastal strata not included in the
2001 survey. The combined 2001 and 2005 line-transect estimate of abundance is the geometric mean of the two annual estimates, or 1,392 (CV=0.13). Calambokidis et al. (2004) estimated humpback whale abundance in these feeding areas from 1991 to 2003 using Petersen mark-recapture estimates based on photoidentification collections in adjacent pairs of years (Figure 2). These data show a general upward trend in abundance followed by a large (but not statistically significant) drop in the 1999/2000 and 2000/2001 estimates. The 2002/2003 mark-recapture population estimate (1,391, CV=0.22) is higher than any previous mark-recapture estimates and may indicate that the apparent decline in the previous two estimates exaggerates any real decline that might have occurred (Calambokidis et al. 2003) or that a real decline was followed by an influx of new whales from another area (Calambokidis et al. 2004). This latter view is substantiated by the greater fraction of new whales seen for the first time in 2003 (Calambokidis et al. 2004). In general, mark-recapture estimates are negatively biased due to heterogeneity in sighting probabilities (Hammond 1986); however, this bias is likely to be minimal because the above mark-recapture estimate is based on data from nearly half of the entire population (the 2002/2003 data The combined 2001 2005 line transect estimate of 1,401 (CV=0.19) is more contained 542 known individuals). precise than recent mark recapture estimates and represents the most recent abundance information for this stock of humpback whales. The best estimate of abundance is the unweighted geometric mean of 2002/2003 mark-recapture and 2001-2005 line transect estimates, or $\frac{1,396}{1,391}$ (CV= $\frac{0.15}{0.13}$) whales. #### **Minimum Population Estimate** The minimum population estimate for humpback whales in the California/Mexico stock is taken as the lower 20th percentile of the log-normal distribution of the unweighted mean estimate or approximately 1,236 1,250. #### **Current Population Trend** Ship surveys provide some indication that humpback whales increased in abundance in California coastal waters between 1979/80 and 1991 (Barlow 1994) and between 1991 and 2005 (Barlow and Forney 2007 2003; Forney 2007), but this increase was not steady, and estimates showed a slight dip in 2001. Mark-recapture population estimates increased steadily from 1988/90 to 1997-98 at about 8% per year (Calambokidis et al. 1999), showed a decrease around 1999-2001, and then increased again in 2002-2003 **Figure 2.** Mark-recapture estimates of the abundance of humpback whales feeding off California, Oregon, and Washington, based on photo-identification studies (Calambokidis et al. 2004). Dotted lines indicate +/- 2 standard errors for each estimate. Straight, bold line indicates linear regression. (Figure 2, Calambokidis et al. 2004) The observed decrease in abundance between 1999-2001 may have been related to prevailing oceanographic conditions off the U.S. west coast. The apparent dip in the 1999/2000 and 2000/2001 estimates may indicate that population growth is slowing, but the subsequent increases in 2001/2002 and 2002/2003 casts some doubt on this explanation. Population estimates for the entire North Pacific have also increased substantially from 1,200 in 1966 to 6,000-8,000 circa 1992. Although these estimates are based on different methods and the earlier estimate is extremely uncertain, the growth rate implied by these estimates (6-7%) is consistent with the recently observed growth rate of the eastern North Pacific stock. #### **CURRENT AND MAXIMUM NET PRODUCTIVITY RATES** The proportion of calves in the California/Oregon/Washington stock from 1986 to 1994 appeared much lower than previously measured for humpback whales in other areas (Calambokidis and Steiger 1994), but in 1995-97 a greater proportion of calves were identified, and the 1997 reproductive rates for this population are closer to those reported for humpback whale populations in other regions (Calambokidis et al. 1998). Despite the apparently low proportion of calves, two independent lines of evidence indicate that this stock was growing in the 1980s and early 1990s (Barlow 1994; Calambokidis et al. 2003) with a best estimate of 8% growth per year (Calambokidis et al. 1999). The current net productivity rate is unknown. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size ($\frac{1,236}{1,250}$) times one half the estimated population growth rate for this stock of humpback whales (½ of 8%) times a recovery factor of 0.1 (for an endangered species with $N_{min} < 1,500$), resulting in a PBR of $\frac{4.9}{5}$. Because this stock spends approximately half its time outside the U.S. EEZ, the PBR allocation for U.S. waters is 2.5 whales per year. #### **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY** Historic Whaling Information on historic whaling has been moved to the Status of Stock section. #### **Fishery Information** A summary of known fishery mortality and injury for this stock of humpback whales for 2000 2004 2002-2006 is given in Table 1. A total of 14 humpback whales were observed entangled in fishing gear from 2002-2006 in California and Oregon. No entanglements were reported from the observer program that monitors the large-mesh swordfish and thresher shark drift gillnet fishery (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007); however, a free-swimming humpback was observed entangled in gillnet gear of unknown origin in 2006 (NMFS, Southwest Regional Stranding Program, unpublished data). Ten humpbacks were reported entangled at sea in trap/pot fishery gear off California and Oregon during 2002-2006, including one animal that was later found dead in Oregon (Northwest Regional Stranding Program, unpublished data). One whale was entangled in sablefish trap gear and another in spot prawn trap gear (NMFS, Southwest Regional Stranding Program, unpublished data). The whale entangled in sablefish trap gear was successfully disentangled by divers who removed all the gear, and the animal swam away immediately following disentanglement. The remaining seven entanglements were attributed to unknown trap/pot gear or crab pot line. Two of the sightings involving crab pot gear were cow/calf pairs where the cow was entangled. Three additional whales were observed entangled in net/rope or other gear of unknown origin during this same period. Detailed information on these fisheries is provided in Appendix 1. After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6 fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). Mean annual takes for this fishery (Table 1) are based on 2000-2004 data This results in an average estimate of zero humpback whales taken annually. Some gillnet mortality of large whales may go unobserved because whales swim away with a portion of the net. The deaths of two humpback whales that stranded in the Southern California Bight have been attributed to entanglement in fishing gear (Heyning and Lewis 1990), and a humpback whale was observed off Ventura, CA in 1993 with a 20 ft section of netting wrapped around and trailing behind. Other unobserved fisheries may also result in injuries or deaths of humpback whales. During the period 2000 2004, there were nine humpbacks observed entangled with line, buoys, and/or trap pot gear. Some of these animals were females with Other than the humpback that died off Oregon in 2006 and the whale disentangled from the sablefish trap gear, T the final status of all these the 12 remaining entangled whales is unknown. Due to the trailing gear, they are considered as serious injuries in Table 1. Including the 12 serious injuries and 1 mortality, total mean annual serious injury and mortality for the commercial fisheries listed in Table 1 is 2.6 per year for the period 2002-2006. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from the same population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). **Table 1.** Summary of available information on the incidental mortality and injury of humpback whales (eastern North Pacific stock) for commercial fisheries that might take this species (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b). Injury includes any entanglement that does not result in immediate death and may include serious injury resulting in death. n/a indicates that data are not available. Mean annual takes are based on 2000 2004 2002-2006 data unless noted otherwise. | | | | Percent
Observer | Observed
Mortality (and | Estimated
mortality | Mean Annual
Takes | | |--------------------------|-----------------|-------------|---------------------|----------------------------|---------------------|----------------------|--| | Fishery Name | Year(s) | Data Type | Coverage | injury) | | | | | | 2000 | | 22.9% | 0 | 0 | | | | | 2001 | | 20.4% | 0 | 0 | | | | CA/OR thresher | 2002 | | 22.1% | 0 | 0 | | | | shark/swordfish drift | 2003 | Observer | 20.2% | 0 | 0 | 0 (n/a) | | | gillnet fishery | 2004 | | 20.6% | 0 | 0 | | | | | 2005 | | 20.9% | 0 | 0 | | | | | 2006 | | 18.5% | 0 | 0 | | | | | 1990-94 | | 10-15% | 0,0,0,0,0 | 0,0,0,0,0 | | | | | | | | | | | | | CA angel shark/halibut | 2001 | No fishery- | 0% | | | | | | and other species large | 2002 | wide | 0% | | | | | | mesh (>3.5") set gillnet | 2003 | observer | 0% | n/a | n/a | n/a | | | fishery | 2004 | program | 0% | | | | | | , and g | 2005 | since 1994 | 0% | | | | | | | 2006 | | | | | | | | D. 4 . 6 . 1 . | 2002-2006 | Strandings | n/a | 1 | 1 | >2.0 | | | Pot or trap fisheries | | & sightings | n/a | (9) | n/a | ≥2.0 | | | unidentified fisheries | 2000-2004 | Strandings& | | 0 | n/a | > 1.8 | | | umaentmed fisheries | 2002-2006 | sightings | n/a | (9) (3) | | ≥ 0.6 | | | Total Annual Takes | | | | | | > 1.8 | | | | | | | | | ≥2.6 | | #### **Ship Strikes** Ship strikes were implicated in the deaths of at least two humpback whales in 1993, one in 1995, and one in 2000 (NMFS, Southwest Regional Office, unpubl. data). One humpback was reported injured as the result of a ship strike in 2005, but the fate of that animal is unknown and details are lacking to determine if it was a serious injury. During 2000 2004 2002-2006, there were an additional five seven injuries and three one mortalityies of unidentified large whales attributed to ship strikes. Additional mortality from ship strikes probably goes unreported because the whales do not strand or, if they do, they do not have obvious signs of trauma. Several humpback whales have been photographed in California with large gashes in their dorsal surface that appear to be from ship strikes (J. Calambokidis, pers. comm.). The average number of documented humpback whale deaths by ship strikes for 2000-2004 2002-2006 is at least 0.2 zero per year, but it is apparent that animals struck by ships are unlikely to be reported. #### Other human-caused mortality A humpback whale died and stranded near Moss Landing in 2000 with synthetic (possibly nylon) line wrapped around its flukes. The origin of this line (fishery or other anthropogenic source) is unknown. There were no humpback mortalities reported from non-commercial fishery sources for the period 2002-2006. The average number of humpback deaths from unknown anthropogenic sources is $\frac{0.2}{2}$ zero per year from $\frac{2000-2004}{2002-2006}$. #### STATUS OF STOCK The reported take of North Pacific humpback whales by commercial whalers totaled approximately 7,700 between 1947 and 1987 (C. Allison, IWC unpubl. data). In addition, approximately 7,300 were taken along the west coast of North America from 1919 to 1929 (Tonnessen and Johnsen 1982). Total 1910 1965 catches from the California Washington stock includes at least the 2,000 taken in Oregon and Washington, the 3,400 taken in California, and the 2,800 taken in Baja California (Rice 1978). Approximately 15,000 humpback whales were taken from the North Pacific from 1919 to 1987 (Tonnessen and Johnsen 1982; C. Allison, IWC unpubl. Data), and, of these, approximately 8,000 were taken from the west coast of Baja California, California, Oregon and Washington (Rice 1978), presumably from this stock. Shore-based whaling apparently depleted the humpback whale stock off California twice: once prior to 1925 (Clapham et al. 1997) and again between 1956 and 1965 (Rice 1974). There has been a prohibition on taking humpback whales since 1966. As a result of commercial whaling, humpback whales were formally listed as "endangered" under the Endangered Species Act (ESA) in 1973. The species is still listed as "endangered", and consequently the California/Mexico stock is automatically considered as a "depleted" and "strategic" stock under the MMPA. The estimated annual mortality and injury due to entanglement (1.8 2.6/yr), other anthropogenic sources ($0.2/y_{\text{F}}$ zero), plus ship strikes ($0.2/y_{\text{F}}$ zero) in California is less than exceeds the PBR allocation of 2.5 for U.S. waters. The nine 12 humpbacks that were entangled at sea may have been and whose final status are unknown were either trailing pot or trap gear, buoys, or had netting wrapped around one or more body parts, and are considered seriously injured. Based on strandings and at sea observations, annual humpback whale mortality and serious injury in commercial fisheries may be is greater than 10% of the PBR; therefore, total fishery mortality and serious injury may is not be approaching zero mortality and serious injury rate. The eastern North Pacific stock appears to be increasing in abundance. #### **Habitat Concerns** Increasing levels of anthropogenic sound in the world's oceans (Andrew et al. 2002), such as those produced by shipping traffic, ATOC (Acoustic Thermometry of Ocean Climate) or LFA (Low Frequency Active) sonar, have been suggested to be a habitat concern for whales, particularly for baleen whales that may communicate using low-frequency sound. Based on vocalizations (Richardson et al. 1995; Au et al. 2006), reactions to sound sources (Lien et al. 1990, 1992; Maybaum 1993), and anatomical studies (Hauser et al. 2001), humpback whales also appear to be sensitive to mid-frequency sounds, including those used in active sonar military exercises (Navy 2007). #### REFERENCES - Allison, C. International Whaling Commission. The Red House, 135 Station Road, Impington, Cambridge, UK CB4 9NP. - Andrew, R. K., B. M. Howe, J. A. Mercer, and M. A. Dzieciuch. 2002. Ocean ambient sound: comparing the 1960's with the 1990's for a receiver off the California coast. Acoustic Research Letters Online 3:65-70. - Au, W.W.L., A.A. Pack, M.O. Lammers, L.M. Herman, M.H. Deakos, K. Andrews. Acoustic properties of humpback whale songs. J. Acoust. Soc. Am. 120 (2), August 2006. - Baker, C. S. 1992. Genetic variability and stock identity of humpback whales, world-wide. Final Contract Report to Int. Whal. Commn. 45pp. - Baker, C. S., D. A. Gilbert, M. T. Weinrich, R. Lambertsen, J. Calambokidis, B. McArdle, G. K. Chambers, and S. J. O'Brien. 1993. Population characteristics of DNA fingerprints in humpback whales (Megaptera novaeangliae). J. Heredity 84:281–290. - Baker, C. S., L. Medrano-Gonzalez, J. Calambokidis, A. Perry, F. Pichler, H. Rosenbaum, J. M. Straley, J. Urban-Ramirez, M. Yamaguchi, and O. von Ziegesar. 1998. Population structure of nuclear and mitochondrial DNA variation among humpback whales in the North Pacific. Mol. Ecol. 7:695-708. - Baker, C. S., S. R. Palumbi, R. H. Lambertsen, M. T. Weinrich, J. Calambokidis, and S. J. O'Brien. 1990. Influence of seasonal migration on geographic distribution of mitochondrial DNA haplotypes in humpback whales. Nature 344(15):238-240. - Barlow, J. 1994. Abundance of large whales in California coastal waters: a comparison of ship surveys in 1979/80 and in 1991. Rept. Int. Whal. Commn. 44:399-406. - Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Administrative Report LJ 97 11, Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25p. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. and B. L. Taylor. 2001. Estimates of large whale abundance off California, Oregon, Washington, and Baja California based on 1993 and 1996 ship surveys. Administrative Report LJ 01 03 available from Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 12p. - Berzin, A. A., and A. A. Rovnin. 1966. The distribution and migrations of whales in the northeastern part of the Pacific, Chukchi and Bering Seas. Izvestiya Tikhookeanskogo Nauchno-Issledovatel'skogo Institut Rybnogo Khozyaistva I Okeanografii 58:179-207. (Translated by Bureau of Commercial Fisheries, U. S. Fish and Wildlife Service, Seattle, 1968, pp. 103-136 *In:* K. I. Panin (ed.), Soviet Research on Marine Mammals of the Far East). - Braham, H. W. 1991. Endangered whales: status update. A Report on the 5-year status of stocks review under the 1978 amendments to the U.S. Endangered Species Act. NMFS Unpublished Report. - Calambokidis, J., T. Chandler, E. Falcone, and A. Douglas. 2004. Research on large whales off California, Oregon and Washington in 2003. Contract Report to Southwest Fisheries Science Center, P.O. Box 271, La
Jolla, CA 92038. 48p. - Calambokidis, J., T. Chandler, K. Rasmussen, G. H. Steiger, L. Schlender. 1998. Humpback and blue whale photographic identification: Report on research in 1997. Contract Report to Southwest Fisheries Science Center, P.O. Box 271, La Jolla, CA 92038. 41pp. - Calambokidis, J., T. Chandler, K. Rasmussen, G. H. Steiger, and L. Schlender. 1999. Humpback and blue whale photo-identification research off California, Oregon and Washington in 1998. Final Contract Report to Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 35 pp. - Calambokidis, J., T. Chandler, L. Schlender, G. H. Steiger, and A. Douglas. 2003. Research on humpback and blue whale off California, Oregon and Washington in 2002. Final Contract Report to Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 49 pp. - Calambokidis, J., and G. H. Steiger. 1994. Population assessment of humpback and blue whales using photo-identification from 1993 surveys off California. Final Contract Report to Southwest Fisheries Science Center, P.O. Box 271, La Jolla, CA 92038. 31pp. - Calambokidis, J., G. H. Steiger, J. R. Evenson, K. R. Flynn, K. C. Balcomb, D. E. Claridge, P. Bloedel, J. M. Straley, C. S. Baker, O. von Ziegesar, M. E. Dahlheim, J. M. Waite, J. D. Darling, G. Ellis, and G. A. Green. 1996. Interchange and isolation of humpback whales in California and other North Pacific feeding grounds. Mar. Mamm. Sci. 12(2):215-226. - Calambokidis, J., G. H. Steiger, J. M. Straley, T. J. Quinn, II, L. M. Herman, S. Cerchio, D. R. Salden, M. Yamaguchi, F. Sato, J. Urbán R., J. Jacobsen, O. von Ziegesar, K. C. Balcomb, C. M. Gabriele, M. E. Dahlheim, N. Higashi, S. Uchida, J. K. B. Ford, Y. Miyamura, P. Ladrón de Guevara P., S. A. Mizroch, L. Schlender and K. Rasmussen. 1997. Abundance and population structure of humpback whales in the North Pacific Basin. Final Contract Report 50ABNF500113 to Southwest Fisheries Science Center, P.O. Box 271, La Jolla, CA 92038. 72p. - Calambokidis, J., G. H. Steiger, J. M. Straley, L. M. Herman, S. Cerchio, D. R. Salden, J. Urbán-R., J. K. Jacobsen, O. von Ziegesar, K. C. Balcomb, C. M. Gabriele, M. E. Dahlheim, S. Uchida, G. Ellis, Y. Miyamura, P. Ladrón de Guevara-P., M. Yamaguchi, F. Sata, S. A. Mizroch, L. Schlender, K. Rasmussen, J. Barlow, and T. J. Quinn II. 2001. Movements and population structure of humpback whales in the North Pacific. Mar. Mamm. Sci. 17(4):769-794. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA] 21p. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Clapham, P. J., S. Leatherwood, I. Szczepaniak, and R. L. Brownell, Jr. 1997. Catches of humpback and other whales from shore stations at Moss Landing and Trinidad, California, 1919-1926. Marine Mammal Science 13(3):368-394. - Cordaro, J. Southwest Region, NMFS, 501 West Ocean Blvd, Long Beach, CA 90802 4213. - Darling, J. D. 1991. Humpback whales in Japanese waters. Ogasawara and Okinawa. Fluke identification catalog 1987-1990. Final Contract Report, World Wildlife Fund for Nature, Japan. 22 pp. - Dohl, T. P., R. C. Guess, M. L. Duman, and R. C. Helm. 1983. Cetaceans of central and northern California, 1980-83: Status, abundance, and distribution. Final Report to the Minerals Management Service, Contract No. 14-12-0001-29090. 284p. - Donovan, G. P. 1991. A review of IWC stock boundaries. Rept. Int. Whal. Commn., Special Issue 13:39-68. - Forney, K. A., J. Barlow, and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27 p. - Green, G. A., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington, 1989-1990. Ch. 1 In: J. J. Brueggeman (ed.). Oregon and Washington Marine Mammal and Seabird Surveys. Minerals Management Service Contract Report 14-12-0001-30426. - Hammond, P. S. 1986. Estimating the size of naturally marked whale populations using capture-recapture techniques. Rept. Int. Whal. Commn., Special Issue 8:253-282. - Hauser, D.S., D.A. Helweg, and P.W.B. Moore, 2001. A bandpass filter-bank model of auditory sensitivity in the humpback whale. Aquatic Mammals 27:82-91. - Heyning, J. E., and T. D. Lewis. 1990. Fisheries interactions involving baleen whales off southern California. Rep. int. Whal. Commn. 40:427-431. - Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Johnson, J. H., and A. A. Wolman. 1984. The humpback whale, <u>Megaptera novaeangliae</u>. Mar. Fish. Rev. 46(4):30-37. - Lien, J., S. Todd and J. Guigne. 1990. Inferences about perception in large cetaceans, especially humpback whales, from incidental catches in fixed fishing gear, enhancement of nets by "alarm" devices, and the acoustics of fishing gear. P. 347-362 *in* J.A. Thomas, R.A. Kastelein and A.Ya. Supin (eds.), Marine mammal sensory systems. Plenum, New York. - Lien, J., W. Barney, S. Todd, R. Seton and J. Guzzwell. 1992. Effects of adding sounds to cod traps on the probability of collisions by humpback whales. P. 701-708 *in* J.A. Thomas, R.A. Kastelein and A.Ya. Supin (eds.), Marine mammal sensory systems. Plenum, New York. - Maybaum, H.L. 1993. Responses of humpback whales to sonar sounds. J. Acoust. Soc. Am. 94(3, Pt. 2): 1848-1849. - Nishiwaki, M. 1966. Distribution and migration of the larger cetaceans in the North Pacific as shown by Japanese whaling results. Pp. 172-191 *In:* K. S. Norris (ed.), Whales, Dolphins and Porpoises. University of California Press, Berkeley, CA. Academic Press, New York. - Norris, T. F., M. McDonald, and J. Barlow. 1999. Acoustic detections of singing humpback whales (<u>Megaptera novaeangliae</u>) in the eastern North Pacific during their northbound migration. J. Acoust. Soc. Am. 106(1):506-514. - Perry, A., C. S. Baker, L. M. Herman. 1990. Population characteristics of individually identified humpback whales in the central and eastern North Pacific: a summary and critique. Rep. Int. Whal. Commn. (Special Issue 12):307-317. - Rice, D. W. 1974. Whales and whale research in the eastern North Pacific. pp. 170-195 <u>In</u>: W. E. Schevill (ed.). <u>The Whale Problem: A Status Report</u>. Harvard Press, Cambridge, MA. - Rice, D. W. 1978. The humpback whale in the North Pacific: distribution, exploitation, and numbers. pp. 29-44 <u>In:</u> K. S. Norris and R. R. Reeves (eds.). <u>Report on a Workshop on Problems Related to Humpback</u> <u>Whales (Megaptera novaeangliae) in Hawaii</u>. Contr. Rept. to U. S. Marine Mammal Commn. NTIS PB-280-794. 90pp. - Richardson, W.J., C.R. Greene, C.I. Malme, and D.H. Thomson. 1995. Marine mammals and noise. Academic Press. - Sosa-Nishizaki, O., R. De la Rosa Pacheco, R. Castro Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Steiger, G. H., J. Calambokidis, R. Sears, K. C. Balcomb, and J. C. Cubbage. 1991. Movement of humpback whales between California and Costa Rica. Mar. Mamm. Sci. 7:306-310. - Tonnessen, J. N., and A. O. Johnsen. 1982. <u>The History of Modern Whaling</u>. Univ. Calif. Press, Berkeley and Los Angeles. 798pp.7:306-310. - Urbán R., J., C. Alverez F., M. Salinas Z., J. Jacobson, K. C. Balcomb III, A. Jaramillo L., P. L. de Guevara P., and A. Aguayo L. 1999. Population size of humpback whale, *Megaptera novaeangliae*, in waters off the Pacific coast of Mexico. - U.S. Department of the Navy (Navy). 2007. Composite Training Unit Exercises and Joint Task Force Exercises Draft Final Environmental Assessment/Overseas Environmental Assessment. Prepared for the Commander, U.S. Pacific Fleet and Commander, Third Fleet. February 2007. #### BLUE WHALE (Balaenoptera musculus):
Eastern North Pacific Stock #### STOCK DEFINITION AND GEOGRAPHIC RANGE The International Whaling Commission (IWC) has formally considered only management stock for blue whales in the North Pacific (Donovan 1991), but this ocean is thought to include more than one population (Ohsumi and Wada 1972; Braham 1991), possibly as many as five (Reeves et al. 1998). Blue whales in the North Pacific produce two distinct, stereotypic calls that have been termed the northwestern and northeastern call types, and it has been proposed that these represent two distinct populations with some degree of geographic overlap (Stafford et al. 2001). The northeastern call predominates in the Gulf of Alaska, the U.S. West Coast, and the eastern tropical Pacific, and the northwestern call predominates from south of the Aleutian Islands to the Kamchatka Peninsula in Russia (Stafford et al. 2001). Both call types are represented in lower latitudes in the central North Pacific but differ in their seasonal patterns (Stafford et al. 2001). Gilpatrick and Perryman (submitted) showed that blue whales from California to Central America are on average about two meters shorter than blue whales from the central and western north Pacific regions. Mate et al. (1999) used satellite tags to show that the eastern tropical Pacific is a migratory destination for blue whales that were tagged off southern California, and photographs of blue whales on the Costa Rica Dome in the eastern tropical Pacific have matched individuals that had been previously photographed off California (Calambokidis, pers. comm.). Photographs of blue whales in California have also been matched to individuals photographed off the Queen Charlotte Islands in northern **British** Columbia (Calambokidis, pers. comm.) and to one individual photographed in the northern Gulf of Alaska (Calambokidis and Barlow, pers. comm.). **Figure 1.** Blue whale sighting locations based on aerial and summer/autumn shipboard surveys off California, Oregon, and Washington, 1991-2005 (see Appendix 2 for data sources and information on timing and location of surveys). Dashed line represents the U.S. EEZ; thin lines represent completed transect effort for all surveys combined. For the Marine Mammal Protection Act (MMPA) stock assessment reports, the Eastern North Pacific Stock of blue whales includes animals found in the eastern North Pacific from the northern Gulf of Alaska to the eastern tropical Pacific. This definition is consistent with both the distribution of the northeastern call type and with the known range of photographically identified individuals. Based on locations where the northeastern call type has been recorded, some individuals in this stock may range as far west as Wake Island and as far south as the Equator (Stafford et al. 1999, 2001). The U.S. West Coast is certainly one of the most important feeding areas in summer and fall (Figure 1), but, increasingly, blue whales from this stock have been found feeding to the north and south of this area during summer and fall. Most of this stock is believed to migrate south to spend the winter and spring in high productivity areas off Baja California, in the Gulf of California, and on the Costa Rica Dome. Given that these migratory destinations are areas of high productivity and given the observations of feeding in these areas, blue whales can be assumed to feed year round. Some individuals from this stock may be present year-round on the Costa Rica Dome (Reilly and Thayer 1990). However, it is also possible that some Southern Hemisphere blue whales might occur north of the equator during the austral winter. One other stock of North Pacific blue whales (in Hawaiian waters) is recognized in the Marine Mammal Protection Act (MMPA) Stock Assessment Reports. #### POPULATION SIZE The size of the feeding stock of blue whales off the U.S. West Coast was estimated recently by both line-transect and mark-recapture methods. Barlow and Forney (2003 2007) estimated 888 603 (CV=0.40-0.29) blue whales off California, Oregon, and Washington based on ship line-transect surveys in 2001 and Forney (2007), estimated 721 (CV=0.27) from a 2005 line-transect survey of the same area. The unweighted geometric mean of the 2001 and 2005 line transect estimates is 800 659 (CV=0.24-0.20) whales. Calambokidis et al. (2003 2007) used photographic mark-recapture and estimated population sizes of 1,567-2,117 (CV=0.320.34) based on 2000-2002 2004-2006 photographs of left sides and 1,953-3,568 (CV=0.330.42) based on right sides. The average of the mark-recapture estimates is 1,760-2,842 (CV=0.32-0.41) whales. Mark-recapture estimates are often negatively biased by individual heterogeneity in sighting probabilities (Hammond 1986); however, Calambokidis et al. 2003 2007 minimize such effects by selecting one sample that was taken randomly with respect to distance from the coast. Similarly, the line-transect estimates may also be negatively biased because some blue whales in this stock are outside of the study area at the time of survey (Calambokidis and Barlow 2004). The best estimate of blue whale abundance is the unweighted geometric mean of the line-transect and mark-recapture estimates, or 1,186 1,368 (CV=0.19 0.22). #### **Minimum Population Estimate** The minimum population estimate for blue whales is taken as the lower 20th percentile of the log-normal distribution of abundance estimated from the combined mark-recapture and line-transect estimates, or approximately 1,005 1,136. #### **Current Population Trend** There is some indication that blue whales increased in abundance in California coastal waters between 1979/80 and 1991 (regression p<0.05, Barlow 1994) and between 1991 and 1996 (not significant, Barlow 1997). Although this may be due to an increase in the stock as a whole, it could also be the result of an increased use of California as a feeding area. The size of the apparent increase in abundance seen by Barlow (1994) is too large to be accounted for by population growth alone. Also, Larkman and Veit (1998) did not detect any increase along consistently surveyed tracklines in the Southern California Bight from 1987 to 1995. Although the population in the North Pacific is expected to have grown since being given IWC protected status in 1966, there is no evidence showing that the eastern North Pacific stock is currently growing. Estimates from line transect surveys declined between 1991-2005 (Figure 2), which is probably due to interannual variability in the fraction of the population that utilizes California waters during the summer and autumn. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No information exists on the rate of growth of blue whale populations in the Pacific (Best 1993). #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (1,005 1,136) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.1 (for an endangered species which has a minimum abundance less than 1,500), resulting in a PBR of 2.0. Because this stock spends approximately half its time outside the U.S. EEZ, the PBR allocation for U.S. waters is half this total, or 1.0 whales per year. #### HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Historic Whaling [Information on historic whaling has been moved to the Status of Stock section] #### Blue Whale Abundance **Figure 2.** Estimates of abundance from vessel-based line transect (LT) and mark-recapture (MR) surveys conducted in California waters, 1991-2005 (Barlow and Forney 2007 2003; Calambokidis et al. 2003; Calambokidis and Barlow 2004; Forney 2007; Calambokidis et al. 2007). The four line transect estimates are based on a 1991-93 pooled estimate and three annual surveys conducted in 1991, 1993, 1996, 2001, and 2005, respectively. The three mark-recapture estimates are based on 1991-1993, 1995-1997, and 2000-2002, and 2004-2006 pooled estimates, respectively. #### **Fisheries Information** The offshore drift gillnet fishery is the only fishery that is likely to take blue whales from this stock, but no fishery mortalities or serious injuries have been observed (Table 1). Detailed information on this fishery is provided in Appendix 1. After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 1999). Mean annual takes for this fishery (Table 1) are based only on $\frac{2000-2004}{2002-2006}$ data (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). This results in an average estimate of zero blue whales taken annually. Some gillnet mortality of large whales may go unobserved because whales swim away with a portion of the net; however, fishermen report that large rorquals (blue and fin whales) usually swim through nets without entangling and with very little damage to the nets. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from the same population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine
mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). **Table 1.** Summary of available information on the incidental mortality and injury of blue whales (Eastern North Pacific stock) for commercial fisheries that might take this species (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b). Mean annual takes are based on 2000–2004 2002-2006 data unless noted otherwise. | Fishery Name | Year(s) | Data Type | Percent
Observer
Coverage | Observed
Mortality (and
injury) | Estimated
mortality
(CV in parentheses) | Mean Annual Takes (CV in parentheses) | |--|--|-----------|---|---------------------------------------|---|---------------------------------------| | CA/OR thresher
shark/swordfish drift gillnet
fishery | 2000
2001
2002
2003
2004
2005
2006 | observer | 22.9%
20.4%
22.1%
20.2%
20.6%
20.9%
18.5% | 0
0
0
0
0 | 0
0
0
0
0 | 0 (n/a) | | Total Annual Takes | | | | | | 0 (n/a) | #### **Ship Strikes** Ship strikes were implicated in the deaths of blue whales in 1980, 1986, 1987, 1993, 2002 and 2004 (J. Cordaro, Southwest Region, NMFS and J. Heyning, pers. comm.). In addition, there was one blue whale injured as the result of a ship strike in 2003 (blood observed in the water). During 2000-2004 2002-2006, there were an additional five twelve injuries and three one mortalities mortality of unidentified large whales attributed to ship strikes. Additional mortality from ship strikes probably goes unreported because the whales do not strand or, if they do, they do not always have obvious signs of trauma. Several blue whales have been photographed in California with large gashes in their dorsal surface that appear to be from ship strikes (J. Calambokidis, pers. comm.). The average number of blue whale mortalities and injuries in California attributed to ship strikes was 0.6 per year for 2000-2004 2002-2006. #### STATUS OF STOCK The reported take of North Pacific blue whales by commercial whalers totaled 9,500 between 1910 and 1965 (Ohsumi and Wada 1972). Approximately 3,000 of these were taken from the west coast of North America from Baja California, Mexico to British Columbia, Canada (Tonnessen and Johnsen 1982; Rice 1992; Clapham et al. 1997; Rice 1974). Blue whales in the North Pacific were given protected status by the IWC in 1966, but Doroshenko (2000) reported that a small number of blue whales were taken illegally by Soviet whalers after that date. As a result of commercial whaling, blue whales were formally listed as "endangered" under the Endangered Species Act (ESA) in 1973. They are still listed as "endangered", and consequently the Eastern North Pacific stock is automatically considered as a "depleted" and "strategic" stock under the MMPA. The annual incidental mortality and injury rate (0.6/year) from ship strikes is less than the calculated PBR (1.0) for this stock, but this rate does not include unidentified large whales struck by vessels, some of which may have been blue whales. To date, no blue whale mortality has been associated with California gillnet fisheries; therefore, total fishery mortality is approaching zero mortality and serious injury rate. #### **Habitat Concerns** Increasing levels of anthropogenic sound in the world's oceans (Andrew et al. 2002) have been suggested to be a habitat concern for blue whales (Reeves et al. 1998). #### REFERENCES Andrew, R. K., B. M. Howe, J. A. Mercer, and M. A. Dzieciuch. 2002. Ocean ambient sound: comparing the 1960's with the 1990's for a receiver off the California coast. Acoustic Research Letters Online 3:65-70. - Barlow, J. 1994. Abundance of large whales in California coastal waters: a comparison of ship surveys in 1979/80 and in 1991. Rept. Int. Whal. Commn. 44:399-406. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon, and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Admin. Rept. LJ-97-11. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA. 25 pp. - Barlow, J. 2003. Preliminary estimates of cetacean abundance off the U.S. West Coast: 1991-2001. Administrative Report LJ-03-03. Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Dr., La Jolla, CA. 26 pp. - Barlow, J., R. W. Baird, J. E. Heyning, K. Wynne, A. M. Manville, II, L. F. Lowry, D. Hanan, J. Sease, and V. N. Burkanov. 1994. A review of cetacean and pinniped mortality in coastal fisheries along the west coast of the U.S. and Canada and the east coast of the Russian Federation. Rep. Int. Whal. Commn, Special Issue 15:405-425. - Barlow, J. and G. A. Cameron. 1999. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Report SC/51/SM2 to the Scientific Committee of the International Whaling Commission, May 1999. 20pp. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Best, P. B. 1993. Increase rates in severely depleted stocks of baleen whales. ICES J. Mar. Sci. 50:169-186. - Braham, H. W. 1991. Endangered whales: status update. A Report on the 5-year status of stocks review under the 1978 amendments to the U.S. Endangered Species Act. NMFS Unpublished Report. - Calambokidis, J., T. Chandler, L. Schlender, G. H. Steiger, and A. Douglas. 2003. Research on humpback and blue whale off California, Oregon and Washington in 2002. Final Contract Report to Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 49 pp. - Calambokidis, J. and J. Barlow. 2004. Abundance of blue and humpback whales in the eastern North Pacific estimated by capture-recapture and line-transect methods. Marine Mammal Science 21(1):63-85. - Calambokidis, J., A. Douglas, E. Falcone, and L. Schlender. 2007. Abundance of blue whales off the US West Coast using photo identification. Contract Report AB133F06SE3906 to Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 13p. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Clapham, P. J., S. Leatherwood, I. Szczepaniak, and R. L. Brownell, Jr. 1997. Catches of humpback and other whales from shore stations at Moss Landing and Trinidad, California, 1919-1926. Marine Mammal Science 13(3):368-394. - Donovan, G. P. 1991. A review of IWC stock boundaries. Rept. Int. Whal. Commn., Special Issue 13:39-68. - Doroshenko, N. V. 2000. Soviet whaling for blue, gray, bowhead and right whales in the North Pacific Ocean, 1961-1979. Pages 96-103 *in* Soviet Whaling Data (1949-1979). Center for Russian Environmental Policy, Moscow. [In Russian and English]. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce NOAA Technical Memorandum, NOAA-TM-NMFS-SWFSC-406. 27p. - Gilpatrick, J. W., Jr. and W. L. Perryman. (submitted). Geographic variation in external morphology of North Pacific and Southern Hemisphere blue whales (*Balaenoptera musculus*). - Hammond, P. S. 1986. Estimating the size of naturally marked whale populations using capture-recapture techniques. Rept. Int. Whal. Commn., Special Issue 8:253-282. - Hanan, D. A. 1986. California Department of Fish and Game coastal marine mammal study, annual report for the period July 1, 1983 June 30, 1984. Admin. Rep. LJ-86-16. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA. 55 pp. - Hanan, D. A., D. B. Holts, and A. L. Coan, Jr. 1993. The California drift gill net fishery for sharks and swordfish, 1981-82 through 1990-91. Calif. Dept. Fish and Game Fish. Bull. No. 175. 95 pp. - Heyning, J. E., and T. D. Lewis. 1990. Fisheries interactions involving baleen whales off
southern California. Rep. int. Whal. Commn. 40:427-431. - Holts, D. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Larkman, V. E. and R. R. Veit. 1998. Seasonality and abundance of blue whales off southern California. CalCOFI Rep. 39:236-239. - Mate, B. R., B. A. Lagerquist, and J. Calambokidis. 1999. Movements of North Pacific blue whales during their feeding season off southern California and their southern fall migration. Mar. Mamm. Sci. 15(4):1246-1257. - Mizroch, S. A., D. W. Rice, and J. M. Breiwick. 1984. The blue whale, <u>Balaenoptera musculus</u>. Mar. Fish. Rev. 46:15-19. - Ohsumi, S. and S. Wada. 1972. Stock assessment of blue whales in the North Pacific. Working Paper for the 24th Meeting of the International Whaling Commission. 20 pp. - Reilly, S. B. and V. G. Thayer. 1990. Blue whale (<u>Balaenoptera musculus</u>) distribution in the eastern tropical Pacific. Mar. Mamm. Sci. 6(4):265-277. - Reeves, R. R., P. J. Clapham, R. L. Brownell, Jr., and G. K. Silber. 1998. Recovery plan for the blue whale (Balaenoptera musculus). Office of Protected Resources, NMFS, NOAA, Silver Spring, Maryland. 30 pp. - Sosa-Nishizaki, O., R. De la Rosa Pacheco, R. Castro Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Stafford, K. M., S. L. Nieukirk, and C. G. Fox. 1999. An acoustic link between blue whales in the eastern tropical Pacific and the Northeast Pacific. Mar. Mamm. Sci. 15(4):1258-1268. - Stafford, K. M., S. L. Nieukirk, and C. G. Fox. 2001. Geographic and seasonal variation of blue whale calls in the North Pacific. Journal Cetacean Research and Management. 3:65-76. - Tonnessen, J. N., and A. O. Johnsen. 1982. <u>The History of Modern Whaling</u>. Univ. Calif. Press, Berkeley and Los Angeles. 798 pp. - Wade, P. R. and T. Gerrodette. 1993. Estimates of cetacean abundance and distribution in the eastern tropical Pacific. Rept. Int. Whal. Commn. 43:477-493. - Yablokov, A. V. 1994. Validity of whaling data. Nature 367:108. # FIN WHALE (Balaenoptera physalus): California/Oregon/Washington Stock ## STOCK DEFINITION AND GEOGRAPHIC RANGE The International Whaling Commission (IWC) recognized two stocks of fin whales in the North Pacific: the East China Sea and the rest of the North Pacific (Donovan 1991). Mizroch et al. (1984) cites evidence for additional fin whale subpopulations in the North Pacific. From whaling records, fin whales that were marked in winter 1962-70 off southern California were later taken in commercial whaling operations between central California and the Gulf of Alaska in summer (Mizroch et al. 1984). More recent observations show aggregations of fin whales yearround in southern/central California (Dohl et al. 1983; Barlow 1997; Forney et al. 1995), year-round in the Gulf of California (Tershy et al. 1993), in summer in Oregon (Green et al. 1992; McDonald 1994), and in summer/autumn in the Shelikof Strait/Gulf of Alaska (Brueggeman et al. 1990). Acoustic signals from fin whale are detected year-round off northern California, Oregon and Washington, with a concentration of vocal activity between September and February (Moore et al. 1998). Fin whales appear very scarce in the eastern tropical Pacific in summer (Wade and Gerrodette 1993) and winter (Lee 1993). Figure 1. Fin whale sighting locations based on aerial and shipboard surveys off California, Oregon, and Washington, 1991-2005 (see Appendix 2 for data sources and information on timing and location of surveys). Dashed line represents the U.S. EEZ; thin lines indicate completed transect effort of all surveys combined. There is still insufficient information to accurately determine population structure, but from a conservation perspective it may be risky to assume panmixia in the entire North Pacific. In the North Atlantic, fin whales were locally depleted in some feeding areas by commercial whaling (Mizroch et al. 1984), in part because subpopulations were not recognized. This assessment will cover the stock of fin whales which is found along the coasts of California, Oregon, and Washington. Because fin whale abundance appears lower in winter/spring in California (Dohl et al. 1983; Forney et al. 1995) and in Oregon (Green et al. 1992), it is likely that the distribution of this stock extends seasonally outside these coastal waters. Genetic studies of the fin whales have shown that the population in the Gulf of California is isolated from fin whales in the rest of the eastern North Pacific and is an evolutionary unique population (Bérubé et al. 2002). The Marine Mammal Protection Act (MMPA) stock assessment reports recognize three stocks of fin whales in the North Pacific: 1) the California/Oregon/Washington stock (this report), 2) the Hawaii stock, and 3) the Alaska stock. #### POPULATION SIZE The initial pre-whaling population of fin whales in the North Pacific was estimated to be 42,000-45,000 (Ohsumi and Wada 1974). In 1973, the North Pacific population was estimated to have been reduced to 13,620-18,680 (Ohsumi and Wada 1974), of which 8,520-10,970 were estimated to belong to the eastern Pacific stock. A minimum of 148 individually-identified fin whales are found in the Gulf of California (Tershy et al. 1990). Recently-3,279 (CV = 0.31) 2,118 (CV=0.18) fin whales were estimated to be off California, Oregon and Washington based on ship surveys in summer/autumn of 2001 (Barlow and Forney 2007) -1996 (Barlow and Taylor 2001) and 2001 (Barlow 2003). A 2005 ship survey of the same area resulted in an abundance estimate of 3,281 (CV=0.25) fin whales (Forney 2007). The best estimate of fin whale abundance in California, Oregon, and Washington waters out to 300 nmi is the geometric mean of line transect estimates from summer/autumn ship surveys conducted in 2001 (Barlow and Forney 2007 2003) and 2005 (Forney 2007), or 3,454 2,636 (CV = 0.27-0.15) whales. This is probably an underestimate because it almost certainly excludes some fin whales which could not be identified in the field and which were recorded as "unidentified rorqual" or "unidentified large whale". #### **Minimum Population Estimate** The minimum population estimate for fin whales is taken as the lower 20th percentile of the lognormal distribution of abundance estimated from 2001 and 2005 summer/fall ship surveys (Barlow 2003; Forney 2007) or approximately 2,760 2,316. #### **Current Population Trend** There is some indication that fin whales have increased in abundance in California coastal waters between 1979/80 and 1991 (Barlow 1994) and between 1991 and 1996 (Barlow 1997), but these trends are not significant. Although the population in the North Pacific is expected to have grown since receiving protected status in 1976, the possible effects of continued unauthorized take (Yablokov 1994) and incidental ship strikes and gillnet mortality make this uncertain. There is no evidence of a population trend from recent line-transect abundance surveys conducted in 1996, 2001, and 2005 in California, Oregon, and Washington waters out to 300 nmi. Estimates from these three surveys have been 2,921 2,042 (CV=0.31 0.13); 3,636 2,118 (CV=0.50 0.18); and 3,281 (CV=0.25) whales, respectively (Barlow and Forney 2007 2003; Forney 2007). #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES There are no estimates of the growth rate of fin whale populations in the North Pacific (Best 1993). #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (2,760 2,316) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.3 (for an endangered species, with $N_{\text{min}} > 1,500$ and $CV_{N\text{min}} < 0.50$), resulting in a PBR of 14. #### HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Historic Whaling Information on historic whaling has been moved to the Status of Stock section. #### **Fisheries Information** The offshore drift gillnet fishery is the only fishery that is likely to take fin whales from this stock, and one fin whale death has been observed since 1990 when NMFS began observing the fishery . Detailed information on this fishery is provided in Appendix 1. After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). Mean annual takes for this fishery (Table 1) are based on 2000 2004 2002-2006 data (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). This results in an average estimate of zero fin whales taken annually. Some gillnet mortality of large whales may go unobserved because whales swim away with a portion of the net; however, fishermen report that large rorquals (blue and fin whales) usually swim through nets without entangling and with very little damage to the nets. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels
in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). **Table 1**. Summary of available information on the incidental mortality and injury of fin whales (CA/OR/WA stock) for commercial fisheries that might take this species (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b). | Fishery Name | Year(s) | Data Type | Percent
Observer
Coverage | Observed
mortality (and
injury in
parentheses) | Estimated
mortality (CV
in
parentheses) | Mean annual
takes (CV in
parentheses) | |-----------------------|-----------------|-----------|---------------------------------|---|--|---| | | 2000 | | 22.9% | 0 | 0 | | | | 2001 | | 20.4% | 0 | 0 | | | CA/OR thresher | 2002 | | 22.1% | 0 | 0 | | | shark/swordfish | 2003 | observer | 20.2% | 0 | 0 | 0 (n/a) | | drift gillnet fishery | 2004 | | 20.6% | 0 | 0 | | | | 2005 | | 20.9% | 0 | 0 | | | | 2006 | | 18.5% | 0 | 0 | | | Total annual takes | | | | | | 0 (n/a) | #### **Ship Strikes** Ship strikes were implicated in the deaths of six seven fin whales and the injury of another from 2000-2004 2002 to 2006, NMFS, unpublished stranding data). During 2000-2004 2002-2006, there were an additional five twelve injuries and three one mortalities mortality of unidentified large whales attributed to ship strikes. Additional mortality from ship strikes probably goes unreported because the whales do not strand or, if they do, they do not always have obvious signs of trauma. The average observed annual mortality and injury due to ship strikes is 1.4 1.6 fin whales per year for the period 2000-2004-2002-2006. #### STATUS OF STOCK Fin whales in the entire North Pacific were estimated to be at less than 38% (16,625 out of 43,500) of historic carrying capacity (Mizroch et al. 1984). The initial abundance has never been estimated separately for the "west coast" stock, but this stock was also probably depleted by whaling. Approximately 46,000 fin whales were taken from the North Pacific by commercial whalers between 1947 and 1987 (C. Allison, IWC, pers. comm.). Approximately 5,000 fin whales were taken from the west coast of North America from 1919 to 1965 (Rice 1974; Tonnessen and Johnsen 1982; Clapham et al. 1997). Fin whales in the North Pacific were given protected status by the IWC in 1976. Fin whales are formally listed as "endangered" under the Endangered Species Act (ESA), and consequently the California to Washington stock is automatically considered as a "depleted" and "strategic" stock under the MMPA. The total incidental mortality due to fisheries (zero) and ship strikes (1.4/yr 1.6/yr) is less than the calculated PBR (146 14). Total fishery mortality is less than 10% of PBR and, therefore, may be approaching zero mortality and serious injury rate. There is some indication that the population may be growing. Increasing levels of anthropogenic sound in the world's oceans has been suggested to be a habitat concern for whales, particularly for baleen whales that may communicate using low-frequency sound (Croll *et al.* 2002). #### REFERENCES Barlow, J. 1994. Abundance of large whales in California coastal waters: a comparison of ship surveys in 1979/80 and in 1991. Rept. Int. Whal. Commn. 44:399-406. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon, and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Admin. Rept. LJ-97-11 available from Southwest Fisheries Science Center, P.O. Box 271, La Jolla, CA. 25 pp. - Barlow, J., R. W. Baird, J. E. Heyning, K. Wynne, A. M. Manville, II, L. F. Lowry, D. Hanan, J. Sease, and V. N. Burkanov. 1994. A review of cetacean and pinniped mortality in coastal fisheries along the west coast of the U.S. and Canada and the east coast of the Russian Federation. Rep. Int. Whal. Commn, Special Issue 15:405-425. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. and B. L. Taylor. 2001. Estimates of large whale abundance off California, Oregon, Washington, and Baja California based on 1993 and 1996 ship surveys. Administrative Report LJ 01-03 available from Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 12p. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Bérubé, M., J. Urban-R., A. E. Dizon, R. L. Brownell, and P. J. Palsbøll. 2002. Genetic identification of a small and highly isolated population of fin whales (*Balaenoptera physalus*) in the Sea of Cortez, México. Conservation Genetics 3:183-190. - Best, P. B. 1993. Increase rates in severely depleted stocks of baleen whales. ICES J. Mar. Sci. 50:169-186 - Brueggeman, J. J., G. A. Green, K. C. Balcomb, C. E. Bowlby, R. A. Grotefendt, K. T. Briggs, M. L. Bonnell, R. G. Ford, D. H. Varoujean, D. Heinemann, and D. G. Chapman. 1990. Oregon-Washington Marine Mammal and Seabird Survey: Information synthesis and hypothesis formulation. U.S. Department of the Interior, OCS Study MMS 89-0030. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Clapham, P. J., S. Leatherwood, I. Szczepaniak, and R. L. Brownell, Jr. 1997. Catches of humpback and other whales from shore stations at Moss Landing and Trinidad, California, 1919-1926. Mar. Mamm. Sci. 13(3):368-394. - Croll, D.A., C.W. Clark, A. Acevedo, B. Tershy, S. Flores, J. Gedamke, and J. Urban. 2002. Only male fin whales sing loud songs. Nature 417:809 - Dohl, T. P., R. C. Guess, M. L. Duman, and R. C. Helm. 1983. Cetaceans of central and northern California, 1980-83: Status, abundance, and distribution. Final Report to the Minerals Management Service, Contract No. 14-12-0001-29090. 284p. - Donovan, G. P. 1991. A review of IWC stock boundaries. Rept. Int. Whal. Commn., Special Issue 13:39-68. - Forney, K. A., J. Barlow, and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K. A., J. Barlow, M. M. Muto, M. Lowry, J. Baker, G. Cameron, J. Mobley, C. Stinchcomb, and J. V. Carretta. 2000. U.S. Pacific Marine Mammal Stock Assessments: 2000. U.S. Dep. Commer. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-300. 276p. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27p. - Green, G. A., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington, 1989-1990. Ch. 1 <u>In:</u> J. J. Brueggeman (ed.). <u>Oregon and Washington Marine Mammal and Seabird Surveys</u>. Minerals Management
Service Contract Report 14-12-0001-30426. - Hanan, D. A. 1986. California Department of Fish and Game coastal marine mammal study, annual report for the period July 1, 1983. June 30, 1984. Admin. Rept. LJ 86-16 available from Southwest Fisheries Science Center, P.O. Box 271, La Jolla, CA. 55pp. - Hanan, D. A., D. B. Holts, and A. L. Coan, Jr. 1993. The California drift gill net fishery for sharks and swordfish, 1981-82 through 1990-91. Calif. Dept. Fish and Game Fish. Bull. No. 175. 95p. - Heyning, J. E., and T. D. Lewis. 1990. Fisheries interactions involving baleen whales off southern California. Rep. int. Whal. Commn. 40:427-431. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276p. - Julian, F. 1997. Cetacean mortality in the California gill net fisheries: preliminary estimates for 1996. Paper SC/49/SM2 presented to the International Whaling Commission, September 1997 (unpublished). 13pp. - Julian, F. and M. Beeson. 1998. Estimates for marine mammal, turtle, and seabird mortality for two California gillnet fisheries: 1990-95. Fish. Bull. 96:271-284. - Lee, T. 1993. Summary of cetacean survey data collected between the years of 1974 and 1985. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-SWFSC-181. 184 pp. - McDonald, M. A., J. A. Hildebrand, and S. C. Webb. 1994. Blue and fin whales observed on a seafloor array in the Northeast Pacific. (unpubl. ms.). - Mizroch, S. A., D. W. Rice, and J. M. Breiwick. 1984. The fin whale, <u>Balaenoptera physalus</u>. Mar. Fish. Rev. 46:20-24. - Moore, S. E., K. M. Stafford, M. E. Dahlheim, C. G. Fox, H. W. Braham, J. J. Polovina, and D. E. Bain. 1998. Seasonal variation in reception of fin whale calls at five geographic areas in the North Pacific. Mar. Mamm. Sci. 14(3):617-627. - Ohsumi, S. and S. Wada. 1974. Status of whale stocks in the North Pacific, 1972. Rept. Int. Whal. Commn. 25:114-126. - Rice, D. W. 1974. Whales and whale research in the eastern North Pacific. pp. 170-195 <u>In</u>: W. E. Schevill (ed.). <u>The Whale Problem: A Status Report</u>. Harvard Press, Cambridge, MA. - Sosa-Nishizaki, O., R. De la Rosa Pacheco, R. Castro Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Tershy, B. R., D. Breese, and C. S. Strong. 1990. Abundance, seasonal distribution and population composition of balaenopterid whales in the Canal de Ballenas, Gulf of California, Mexico. Rept. Int. Whal. Commn., Special Issue 12:369-375. - Tershy, B. R., J. Urbán-R., D. Breese, L. Rojas-B., and L. T. Findley. 1993. Are fin whales resident to the Gulf of California? Rev. Invest. Cient., Univ. Auton. de Baja California Sur. 1:69-71. - Tonnessen, J. N., and A. O. Johnsen. 1982. <u>The History of Modern Whaling</u>. Univ. Calif. Press, Berkeley and Los Angeles. 798pp. Wade, P. R. and T. Gerrodette. 1993. Estimates of cetacean abundance and distribution in the eastern tropical Pacific. Rept. Int. Whal. Commn. 43:477-493.Yablokov, A. V. 1994. Validity of whaling data. Nature 367:108. #### SEI WHALE (Balaenoptera borealis): Eastern North Pacific Stock #### STOCK DEFINITION AND GEOGRAPHIC RANGE The International Whaling Commission (IWC) only considers one stock of sei whales in the North Pacific (Donovan 1991), but some evidence exists for multiple populations (Masaki 1977; Mizroch et al. 1984; Horwood 1987). Sei whales are distributed far out to sea in temperate regions of the world and do not appear to be associated with coastal features. Whaling effort for this species was distributed continuously across the North Pacific between 45-55°N (Masaki 1977). Two sei whales that were tagged off California were later killed off Washington and British Columbia (Rice 1974) and the movement of tagged animals has been noted in many other regions of the North Pacific. Sei whales are now rare in California waters (Dohl et al. 1983; Barlow 1997; Forney et al. 1995; Mangels and Gerrodette 1994), but were the fourth most common whale taken by California coastal whalers in the 1950s-1960s (Rice 1974). They are extremely rare south of California (Wade and Gerrodette 1993; Lee 1993). Lacking additional information on sei whale population structure, sei whales in the eastern North Pacific (east of longitude 180°) will be considered as a separate stock. #### POPULATION SIZE Ohsumi and Wada (1974) estimate the pre-whaling abundance of sei **Figure 1.** Sei whale sighting locations based on aerial and shipboard surveys off California, Oregon, and Washington, 1991-2005 (see Appendix 2 for data sources and information on timing and location of surveys). Dashed line represents the U.S. EEZ; thin lines indicate completed transect effort of all surveys combined. whales to be 58,000-62,000 in the North Pacific. Later, Tillman (1977) used a variety of different methods to estimate the abundance of sei whales in the North Pacific and revised this pre-whaling estimate to 42,000. His estimates for the year 1974 ranged from 7,260 to 12,620. All methods depend on using the history of catches and trends in CPUE or sighting rates; there have been no direct estimates of sei whale abundance in the entire (or eastern) North Pacific based on sighting surveys. Only five confirmed sightings of sei whales were made in California, Oregon, and Washington waters during extensive ship and aerial surveys between 1991-2005 (Hill and Barlow 1992; Carretta and Forney 1993; Mangels and Gerrodette 1994; VonSaunder and Barlow 1999; Barlow 2003; Forney 2007). Green et al. (1992) did not report any sightings of sei whales in aerial surveys of Oregon and Washington. Abundance estimates for the two most recent line transect surveys of California, Oregon, and Washington waters out to 300 nmi are 25 29 (CV=1.01-1.00) and 74 (CV=0.88) sei whales, respectively (Barlow and Forney 2007). The best estimate of abundance for California, Oregon, and Washington waters out to 300 nmi is the unweighted geometric mean of the 2001 and 2005 estimates, or $43\ 46\ (CV = 0.61)$ sei whales (Barlow and Forney 2007 2003; Forney 2007). #### **Minimum Population Estimate** The minimum population estimate for sei whales is taken as the lower 20th percentile of the lognormal distribution of abundance estimated from 2001 and 2005 shipboard line-transect surveys, or approximately 27 28. #### **Current Population Trend** There are no data on trends in sei whale abundance in the eastern North Pacific waters. Although the population in the North Pacific is expected to have grown since being given protected status in 1976, the possible effects of continued unauthorized take (Yablokov 1994) and incidental ship strikes and gillnet mortality make this uncertain. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES There are no estimates of the growth rate of sei whale populations in the North Pacific (Best 1993). #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size ($\frac{27}{28}$) times one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$ of 4%) times a recovery factor of 0.1 (for an endangered species), resulting in a PBR of 0.05. #### HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Historic Whaling [Information on historic whaling has been moved to the Status of Stock section] #### Fishery Information The offshore drift gillnet fishery is the only fishery that is likely to take sei whales from this stock, but no fishery mortalities or serious injuries have been observed (Table 1). Detailed information on this fishery is provided in Appendix 1. After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). Mean annual takes for this fishery (Table 1) are based on 2000–2004 2002-2006 data (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). This results in an average estimate of zero sei whales taken annually. However, some gillnet mortality of large whales may go unobserved because whales swim away with a portion of the net. **Table 1.** Summary of available information on the incidental mortality and injury of sei whales (eastern North Pacific stock) for commercial fisheries that might take this species. n/a indicates that data are not available. Mean annual takes are based on 2000 2004 2002-2006 data unless noted otherwise. | Fishery Name | Year(s) | Data Type | Percent
Observer
Coverage | Observed
mortality (and
injury in
parentheses) | Estimated
mortality (CV
in
parentheses) | Mean annual
takes (CV in
parentheses) | |-----------------------|-----------------|-----------|---------------------------------|---|--|---| | | 2000 | | 22.9% | 0 | 0 | | | | 2001 | | 20.4% | 0 | 0 | | | CA/OR thresher | 2002 | | 22.1% | 0 | 0 | | | shark/swordfish | 2003 | observer | 20.2% | 0 | 0 | 0 (n/a) | | drift gillnet fishery | 2004 | | 20.6% | 0 | 0 | | | | 2005 | | 20.9% | 0 | 0 | | | | 2006 | | 18.5% | 0 | 0 | | | Total annual takes | | | | | • | 0 (n/a) | #### **Ship Strikes** One ship strike mortality was reported in Washington in 2003 (NMFS Northwest Regional Office, unpublished data). During 2000-2004 2002-2006, there were an additional five twelve injuries and three one mortalities
mortality of unidentified large whales attributed to ship strikes. Additional mortality from ship strikes probably goes unreported because the whales do not strand or, if they do, they do not always have obvious signs of trauma. The average observed annual mortality due to ship strikes is 0.2 sei whales per year for the period 2000-2004 2002-2006. #### STATUS OF STOCK Previously, sei whales were estimated to have been reduced to 20% (8,600 out of 42,000) of their pre-whaling abundance in the North Pacific (Tillman 1977). The initial abundance has never been reported separately for the eastern North Pacific stock, but this stock was also probably depleted by whaling. The reported take of North Pacific sei whales by commercial whalers totaled 61,500 between 1947 and 1987 (C. Allison, IWC, pers. comm.). Of these, 384 at least 410 were taken by-shore-based whaling stations in central California between 1958 1919 and 1965 (Rice 1974; Clapham et al. 1997). An additional 26 were taken off central and northern California between 1919 and 1926 (Clapham et al. 1997). There has been an IWC prohibition on taking sei whales since 1976, and commercial whaling in the U.S. has been prohibited since 1972. Sei whales are formally listed as "endangered" under the Endangered Species Act (ESA), and consequently the eastern North Pacific stock is automatically considered as a "depleted" and "strategic" stock under the Marine Mammal Protection Act (MMPA). Total estimated fishery mortality is zero and therefore is approaching zero mortality and serious injury rate. The total incidental mortality due to ship strikes (0.2/yr) is greater than the calculated PBR (0.05). Increasing levels of anthropogenic sound in the world's oceans has been suggested to be a habitat concern for whales, particularly for baleen whales that may communicate using low-frequency sound (Croll *et al.* 2002). #### REFERENCES - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon, and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Admin. Rept. LJ-97-11. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA. 25 pp. - Barlow, J., R. W. Baird, J. E. Heyning, K. Wynne, A. M. Manville, II, L. F. Lowry, D. Hanan, J. Sease, and V. N. Burkanov. 1994. A review of cetacean and pinniped mortality in coastal fisheries along the west coast of the U.S. and Canada and the east coast of the Russian Federation. Rep. Int. Whal. Commn, Special Issue 15:405-425. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Best, P. B. 1993. Increase rates in severely depleted stocks of baleen whales. ICES J. Mar. Sci. 50:169-186. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J. V. and K. A. Forney. 1993. Report on two aerial surveys for marine mammals in California coastal waters utilizing a NOAA DeHavilland Twin Otter Aircraft: March 9-April7, 1991 and February 8-April 6, 1992. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-SWFSC-185. 77 pp. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30. - Clapham, P. J., S. Leatherwood, I. Szczepaniak, and R. L. Brownell, Jr. 1997. Catches of humpback and other whales from shore stations at Moss Landing and Trinidad, California, 1919-1926. Mar. Mamm. Sci. 13(3):368-394. - Croll, D.A., C.W. Clark, A. Acevedo, B. Tershy, S. Flores, J. Gedamke, and J. Urban. 2002. Only male fin whales sing loud songs. Nature 417:809 - Dohl, T. P., R. C. Guess, M. L. Duman, and R. C. Helm. 1983. Cetaceans of central and northern California, 1980-83: Status, abundance, and distribution. Final Report to the Minerals Management Service, Contract No. 14-12-0001-29090. 284 pp. - Donovan, G. P. 1991. A review of IWC stock boundaries. Rept. Int. Whal. Commn., Special Issue 13:39-68. - Forney, K. A., J. Barlow, and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce NOAA Technical Memorandum, NOAA-TM-NMFS-SWFSC-406. 27p. - Green, G. A., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington, 1989-1990. Ch. 1 In: J. J. Brueggeman (ed.). Oregon and Washington Marine Mammal and Seabird Surveys. Minerals Management Service Contract Report 14-12-0001-30426. - Hanan, D. A. 1986. California Department of Fish and Game coastal marine mammal study, annual report for the period July 1, 1983 June 30, 1984. Admin. Rept. LJ-86-16. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA. 55pp. - Hanan, D. A., D. B. Holts, and A. L. Coan, Jr. 1993. The California drift gill net fishery for sharks and swordfish, 1981-82 through 1990-91. Calif. Dept. Fish and Game Fish. Bull. No. 175. 95pp. - Heyning, J. E., and T. D. Lewis. 1990. Fisheries interactions involving baleen whales off southern California. Rep. Int. Whal. Commn. 40:427-431. - Hill, P. S. and J. Barlow. 1992. Report of a marine mammal survey of the California coast aboard the research vessel McARTHUR July 28-November 5, 1991. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-SWFSC-169. 103 pp. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Horwood, J. 1987. <u>The Sei Whale: Population Biology, Ecology and Management.</u> Croom Helm, London, U.K. 375pp. - Lee, T. 1993. Summary of cetacean survey data collected between the years of 1974 and 1985. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-SWFSC-181. 184 pp. - Mangels, K. F. and T. Gerrodette. Report of cetacean sightings during a marine mammal survey in the eastern Pacific Ocean and the Gulf of California aboard the NOAA ships *McArthur* and *David Starr Jordan* July 28 November 6, 1993. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-SWFSC-221. 88 pp. - Masaki, Y. 1977. The separation of the stock units of sei whales in the North Pacific. Rept. Int. Whal. Commn., Special Issue 1:71-77. - Mizroch, S. A., D. W. Rice, and J. M. Breiwick. 1984. The sei whale, <u>Balaenoptera borealis</u>. Mar. Fish. Rev. 46:25-29. - Ohsumi, S. and S. Wada. 1974. Status of whale stocks in the North Pacific, 1972. Rept. Int. Whal. Commn. 25:114-126. - Rice, D. W. 1974. Whales and whale research in the eastern North Pacific. pp. 170-195 <u>In</u>: W. E. Schevill (ed.). <u>The Whale Problem: A Status Report</u>. Harvard Press, Cambridge, MA. - Tillman, M. F. 1977. Estimates of population size for the North Pacific sei whale. Rept. Int. Whal. Commn., Special Issue 1:98-106. - Von Saunder, A. and J. Barlow. 1999. A report of the Oregon, California and Washington Line-transect Experiment (ORCAWALE) conducted in west coast waters during summer/fall 1996. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-SWFSC-264. 40 pp. - Wade, P. R. and T. Gerrodette. 1993. Estimates of cetacean abundance and distribution in the eastern tropical Pacific. Rept. Int. Whal. Commn. 43:477-493. - Yablokov, A. V. 1994. Validity of whaling data. Nature 367:108. # MINKE WHALE (Balaenoptera acutorostrata): California/Oregon/Washington Stock ## STOCK DEFINITION AND GEOGRAPHIC RANGE The
International Whaling Commission (IWC) recognizes 3 stocks of minke whales in the North Pacific: one in the Sea of Japan/East China Sea, one in the rest of the western Pacific west of 180°N, and one in the "remainder" of the Pacific (Donovan 1991). The "remainder" stock only reflects the lack of exploitation in the eastern Pacific and does not imply that only one population exists in that area (Donovan 1991). In the "remainder" area, minke whales are relatively common in the Bering and Chukchi seas and in the Gulf of Alaska, but are not considered abundant in any other part of the eastern Pacific (Leatherwood et al. 1982; Brueggeman et al. 1990). In the Pacific, minke whales are usually seen over continental shelves (Brueggeman et al. 1990). In the extreme north, minke whales are believed to be migratory, but in inland waters of Washington and in central California they appear to establish home ranges (Dorsey et al. 1990). Minke whales occur yearround in California (Dohl et al. 1983; Forney et al. 1995; Barlow 1997) and in the Gulf of California (Tershy et al. 1990). Minke whales are present at least in summer/fall along the Baja California peninsula (Wade and Gerrodette 1993). Because the **Figure 1.** Minke whale sighting locations based on aerial and shipboard surveys off California, Oregon, and Washington, 1991- 2005 (see Appendix 2 for data sources and information on timing and location of surveys). Dashed line represents the U.S. EEZ; thin lines indicate completed transect effort of all surveys combined. "resident" minke whales from California to Washington appear behaviorally distinct from migratory whales further north, minke whales in coastal waters of California, Oregon, and Washington (including Puget Sound) are considered as a separate stock. Minke whales in Alaskan waters are considered in a separate stock assessment report. #### POPULATION SIZE No estimates have been made for the number of minke whales in the entire North Pacific. The number of minke whales off California Oregon, and Washington is estimated to be the geometric mean of based on two recent ship line transect surveys conducted in summer and autumn of 2001 and 2005 (Barlow and Forney 2007 $\frac{2003}{2003}$; Forney 2007); or $\frac{898}{2000}$ 806 (CV = $\frac{0.65}{2000}$ 0.63) whales. Two minke whales were seen during 1996 aerial surveys in Washington and British Columbia inland waters (Calambokidis et al. 1997), but no abundance estimates are available for this area. #### **Minimum Population Estimate** The minimum population estimate for minke whales is taken as the lower 20th percentile of the log-normal distribution of abundance estimated from 2001 and 2005 summer/fall ship surveys in California, Oregon, and Washington waters (Barlow and Forney 2007 2003; Forney 2007) or approximately 544 495. #### **Current Population Trend** There are no data on trends in minke whale abundance in waters of California, Oregon and/or Washington. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES There are no estimates of the growth rate of minke whale populations in the North Pacific (Best 1993). #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (544 495) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.5 (for a stock of unknown status), resulting in a PBR of 5.4 5 whales. #### HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Historic Whaling Information on historic whaling has been moved to the Status of Stock section. **Table 1.** Summary of available information on the incidental mortality and injury of minke whales (CA/OR/WA stock) for commercial fisheries that might take this species (Pierce et al. 1996; Cameron and Forney 1999, 2000; Carretta 2001, 2002 Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). Mean annual takes are based on 2000 2004 2002-2006 data unless noted otherwise. | | | | Percent
Observer | Observed
mortality (and
injury in | Estimated
mortality (CV
in | Mean annual
takes (CV in | | |-----------------------|-----------------|--------------|---------------------|---|----------------------------------|-----------------------------|--| | Fishery Name | Year(s) | Data Type | Coverage | parentheses) | parentheses) | parentheses) | | | | 2000 | | 22.9% | 0 | 0 | · | | | | 2001 | | 20.4% | 0 | 0 | | | | CA/OR thresher | 2002 | | 22.1% | 0 | 0 | | | | shark/swordfish | 2003 | observer | 20.2% | 0 | 0 | 0 (n/a) | | | drift gillnet fishery | 2004 | | 20.6% | 0 | 0 | | | | | 2005 | | 20.9% | 0 | 0 | | | | | 2006 | | 18.5% | 0 | 0 | | | | WA Puget Sound | | | | | | | | | Region salmon | 2000- | Calf mamouta | 0% | 0 | 0 | n/a | | | drift gillnet fishery | 2004 | Self-reports | 0% | U | U | II/a | | | (areas 7 and 7A) | | | | | | | | | | 2000 | | 1.8% ¹ | | | | | | CA angel | 2001 | | 0% | | | | | | shark/halibut and | 2002 | | 0% | | | | | | other species large | 2003 | | 0% | 0 | 0 | n/a | | | mesh (>3.5") set | 2004 | | 0% | | | | | | gillnet fishery | 2005 | | 0% | | | | | | | 2006 | | <1% | | | | | | Total annual takes | | | | | | 0 | | In 1999/2000 approximately 25% of the Monterey Bay portion of this fishery was observed, accounting for less than 5% of all fishing effort. #### **Fishery Information** Minke whales may occasionally be caught in coastal set gillnets off California, in salmon drift gillnet in Puget Sound, Washington, and in offshore drift gillnets off California and Oregon. A summary of known fishery mortality and injury for this stock of minke whales is given in Table 1 for the period 2000-2004 2002-2006. Detailed information on this fishery is provided in Appendix 1. After the 1997 implementation of a Take Reduction Plan, which included skipper education workshops and required the use of pingers and minimum 6-fathom extenders, overall cetacean entanglement rates in the drift gillnet fishery dropped considerably (Barlow and Cameron 2003). Mean annual takes for this fishery (Table 1) are based on 2000-2004 data (Carretta and Chivers 2004, Carretta et al. 2005a, 2005b, Carretta and Enriquez 2006, 2007). This results in an average estimate of zero minke whales taken annually. In 1999, a whale skin sample was retrieved from a large hole that had been punched through a drift gillnet (trip DN-SD-0941). The sample was later identified as a minke whale using genetic sequencing methods. Total fishery mortality for minke whales was not estimated for the 1980-86 California Department of Fish and Game observer program for the drift gillnet fishery, but based on the 2 observed deaths in 1% of the total sets, the total mortality during this time may have been on the order of 200 minke whales or 40 per year. Drift gillnet fisheries for swordfish and sharks exist along the entire Pacific coast of Baja California, Mexico and may take animals from this population. Quantitative data are available only for the Mexican swordfish drift gillnet fishery, which uses vessels, gear, and operational procedures similar to those in the U.S. drift gillnet fishery, although nets may be up to 4.5 km long (Holts and Sosa-Nishizaki 1998). The fleet increased from two vessels in 1986 to 31 vessels in 1993 (Holts and Sosa-Nishizaki 1998). The total number of sets in this fishery in 1992 can be estimated from data provided by these authors to be approximately 2700, with an observed rate of marine mammal bycatch of 0.13 animals per set (10 marine mammals in 77 observed sets; Sosa-Nishizaki et al. 1993). This overall mortality rate is similar to that observed in California driftnet fisheries during 1990-95 (0.14 marine mammals per set; Julian and Beeson, 1998), but species-specific information is not available for the Mexican fisheries. Previous efforts to convert the Mexican swordfish driftnet fishery to a longline fishery have resulted in a mixed-fishery, with 20 vessels alternately using longlines or driftnets, 23 using driftnets only, 22 using longlines only, and seven with unknown gear type (Berdegué 2002). #### **Ship Strikes** Ship strikes were implicated in the death of one minke whale in 1977 (J. Heyning and J. Cordaro, pers. comm.). The reported minke whale mortality due to ship strikes is zero for the period 2000-2004. Additional mortality from ship strikes probably goes unreported because the whales do not strand or, if they do, they do not always have obvious signs of trauma. #### STATUS OF STOCK The estimated take of western North Pacific minke whales by commercial whalers was approximately 31,000 from 1930 to 1987 (C. Allison, IWC, pers. comm.). Minke whales were not harvested commercially in the eastern North Pacific: none were reported taken by shore based whaling stations in central or northern California between 1919 and 1926 (Rice 1974; Clapham et al. 1997) or between 1958 and 1965 (Rice 1974). Reported aboriginal takes of minke whales in Alaska totaled 7 between 1930 and 1987 (C. Allison, IWC, pers. comm.). There were no known commercial whaling harvests of minke whales from Baja California to Washington. Minke whales are not listed as "endangered" under the Endangered Species Act and are not considered "depleted" under the MMPA. The greatest uncertainty in their status is whether entanglement in commercial gillnets and ship strikes could have reduced this relatively small population. Because of this, the status of the west-coast stock should be is considered "unknown". The annual mortality due to fisheries (0.0/yr) and ship strikes (0.0/yr) is less than the calculated PBR for this stock (5.4), so they are not considered a "strategic" stock under the MMPA. Fishery mortality is less than 10% of the PBR; therefore, total fishery mortality is approaching zero mortality and serious injury rate. There is no information on trends in the
abundance of this stock. Increasing levels of anthropogenic sound in the world's oceans has been suggested to be a habitat concern for whales, particularly for baleen whales that may communicate using low-frequency sound. #### **REFERENCES** - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon, and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Admin. Rep. LJ-97-11. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25 pp. - Barlow, J., K. A. Forney, P. S. Hill, R. L. Brownell, Jr., J. V. Carretta, D. P. DeMaster, F. Julian, M. S. Lowry, T. Ragen, and R. R. Reeves. 1997. U.S. Pacific Marine Mammal Stock Assessments: 1996. U.S. Dep. Commer. NOAA Tech. Memo. NMFS_SWFSC-248. 223 pp. - Barlow, J., R. W. Baird, J. E. Heyning, K. Wynne, A. M. Manville, II, L. F. Lowry, D. Hanan, J. Sease, and V. N. Burkanov. 1994. A review of cetacean and pinniped mortality in coastal fisheries along the west coast of the U.S. and Canada and the east coast of the Russian Federation. Rep. Int. Whal. Commn, Special Issue 15:405-425. - Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283. - Barlow, J. 2003. Preliminary estimates of the abundance of cetaceans along the U.S. west coast: 1991_2001. Southwest Fisheries Science Center Administrative Report LJ_03_03. Available from SWFSC, 8604 La Jolla Shores Dr., La Jolla CA 92037. 31p. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Berdegué, J. 2002. Depredación de las especies pelágicas reservadas a la pesca deportiva y especies en peligro de extinción con uso indiscriminado de artes de pesca no selectivas (palangres, FAD's, trampas para peces y redes de agallar fijas y a la deriva) por la flota palangrera Mexicana. Fundación para la conservación de los picudos. A.C. Mazatlán, Sinaloa, 21 de septiembre. - Best, P. B. 1993. Increase rates in severely depleted stocks of baleen whales. ICES J. Mar. Sci. 50:169-186. - Brueggeman, J. J., G. A. Green, K. C. Balcomb, C. E. Bowlby, R. A. Grotefendt, K. T. Briggs, M. L. Bonnell, R. G. Ford, D. H. Varoujean, D. Heinemann, and D. G. Chapman. 1990. Oregon-Washington Marine Mammal and Seabird Survey: Information synthesis and hypothesis formulation. U.S. Department of the Interior, OCS Study MMS 89-0030. - Calambokidis, J., S. Osmek, and J. L. Laake. 1997. Aerial surveys for marine mammals in Washington and British Columbia inside waters. Final Contract Report to National Marine Mammal Laboratory, Seattle, WA. - Carretta, J.V. and L. Enriquez. 2007. Marine mammal and sea turtle bycatch in the California/Oregon thresher shark and swordfish drift gillnet fishery in 2006. Administrative Report LJ-07-06, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 9p. - Carretta, J.V. and L. Enriquez. 2006. Marine mammal bycatch and estimated mortality in California commercial fisheries during 2005. Administrative Report LJ-06-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 14p. - Carretta, J.V. and S.J. Chivers. 2004. Preliminary estimates of marine mammal mortality and biological sampling of cetaceans in California gillnet fisheries for 2003. Paper SC/56/SM1 presented to the IWC Scientific Committee, June 2004 (unpublished). [Available from Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]. - Carretta, J.V., S.J. Chivers, and K. Danil. 2005a. Preliminary estimates of marine mammal bycatch, mortality, and biological sampling of cetaceans in California gillnet fisheries for 2004. Administrative Report LJ-05-10, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, California, 92037. 17 p. - Carretta, J.V., T. Price, D. Petersen, and R. Read. 2005b. Estimates of marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for swordfish and thresher shark, 1996-2002. Marine Fisheries Review 66(2):21-30.Dohl, T. P., R. C. Guess, M. L. Duman, and R. C. Helm. 1983. Cetaceans of central and northern California, 1980-83: Status, abundance, and distribution. Final Report to the Minerals Management Service, Contract No. 14-12-0001-29090. 284p. - Donovan, G. P. 1991. A review of IWC stock boundaries. Rept. Int. Whal. Commn., Special Issue 13:39-68. - Dorsey, E. M., S. J. Stern, A. R. Hoelzel, and J. Jacobsen. 1990. Minke whale (<u>Balaenoptera acutorostrata</u>) from the west coast of North America: individual recognition and small-scale site fidelity. Rept. Int. Whal. Commn., Special Issue 12:357-368. - Forney, K. A., J. Barlow, and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce NOAA Technical Memorandum, NOAA-TM-NMFS-SWFSC-406. 27p. - Green, G. A., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington, 1989-1990. Ch. 1 <u>In:</u> J. J. Brueggeman (ed.). <u>Oregon and Washington Marine Mammal and Seabird Surveys</u>. Minerals Management Service Contract Report 14-12-0001-30426. - Hanan, D. A. 1986. California Department of Fish and Game coastal marine mammal study, annual report for the period July 1, 1983 - June 30, 1984. Admin. Rept. LJ-86-16. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA. 55 pp. - Hanan, D. A., D. B. Holts, and A. L. Coan, Jr. 1993. The California drift gill net fishery for sharks and swordfish, 1981-82 through 1990-91. Calif. Dept. Fish and Game Fish. Bull. No. 175. 95 pp. - Heyning, J. E., and T. D. Lewis. 1990. Fisheries interactions involving baleen whales off southern California. Rep. Int. Whal. Commn. 40:427-431. - Holts, D. and O. Sosa-Nishizaki. 1998. Swordfish, *Xiphias gladius*, fisheries of the eastern North Pacific Ocean. *In*: I. Barrett, O. Sosa-Nishizaki and N. Bartoo (eds.). Biology and fisheries of swordfish, *Xiphias gladius*. Papers from the International Symposium on Pacific Swordfish, Ensenada Mexico, 11-14 December 1994. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 142, 276 p. - Julian, F. and M. Beeson. 1998. Estimates for marine mammal, turtle, and seabird mortality for two California gillnet fisheries: 1990-95. Fish. Bull. 96:271-284. - Leatherwood, S., R. R. Reeves, W. F. Perrin, and W. E. Evans. 1982. Whales, dolphins, and porpoises of the eastern North Pacific and adjacent Arctic waters: A guide to their identification. NOAA Technical Rept. NMFS Circular 444. 245pp. - Pierce, D. J., M. Alexandersdottie, S. J. Jeffries, P. Erstad, W. Beattie, and A. Chapman. 1996. Interactions of marbled murrelets and marine mammals with the 1994 Puget Sound sockeye gill net fishery. Final Report, Wash. Dept. Fish and Wildlife, Olympia, WA. 21pp. - Rice, D. W. 1974. Whales and whale research in the eastern North Pacific. pp. 170-195 <u>In</u>: W. E. Schevill (ed.). <u>The Whale Problem: A Status Report</u>. Harvard Press, Cambridge, MA. - Sosa-Nishizaki, O., R. De la Rosa Pacheco, R. Castro Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306. - Tershy, B. R., D. Breese, and C. S. Strong. 1990. Abundance, seasonal distribution and population composition of balaenopterid whales in the Canal de Ballenas, Gulf of California, Mexico. Rept. Int. Whal. Commn., Special Issue 12:369-375. - Von Saunder, A. and J. Barlow. 1999. A report of the Oregon, California and Washington Line-transect Experiment (ORCAWALE) conducted in west coast waters during summer/fall 1996. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-SWFSC-264. 40 pp. - Wade, P. R. and T. Gerrodette. 1993. Estimates of cetacean abundance and distribution in the eastern tropical Pacific. Rept. Int. Whal. Commn. 43:477-493. # FALSE KILLER WHALE (Pseudorca crassidens): Pacific Islands Region Stock Complex - Hawaii Insular, Hawaii Pelagic, and Palmyra Atoll Stocks #### STOCK DEFINITIONS AND GEOGRAPHIC RANGES False killer whales are found worldwide mainly in tropical and warm-temperate waters (Stacey et al. 1994). In the North Pacific, this species is well known from southern Japan, Hawaii, and the eastern tropical Pacific. There are six stranding records from Hawaiian waters (Nitta 1991; Maldini 2005). One on-effort sighting of false killer whales was made during a 2002 shipboard survey of waters within the U.S. Exclusive Economic Zone (EEZ) of the Hawaiian Islands (Figure 1; Barlow 2006). Smaller-scale surveys conducted around the Main Hawaiian Islands (Figure 2) show that false killer whales are also commonly encountered in nearshore waters (Baird et al. 2005, Mobley et al. 2000, Mobley 2001, 2002, 2003, 2004). This species also occurs in U.S. EEZ waters around Palmyra Atoll (Figure 1) and sightings of false killer whales have been recently confirmed within the Johnston Atoll EEZ (NMFS/PIR/PSD unpublished data) and the U.S. EEZ waters of American Samoa (Johnston et al. In Press). Genetic analyses of tissue samples collected within the Eastern North Pacific (ENP) indicate restricted gene flow between false killer whales sampled near the main Hawaiian Islands and false killer whales sampled in all other regions of the ENP (Chivers et al. 2007). Since 2003, observers of the Hawaii-based longline fishery have also been collecting tissue samples of
caught cetaceans for genetic analysis whenever possible. Four false killer whale samples, two collected outside the Hawaiian EEZ and two collected more than 100 nautical miles from the main Hawaiian Islands (See Figure 3) were determined to have ENP-like haplotypes. indicates that false killer whales within the Hawaiian EEZ belong to two different genetic populations, with a boundary somewhere within the Hawaiian EEZ. Based on sighting locations and genetic analyses of tissue samples (Chivers et al. 2008), this stock assessment report applies a stock boundary corresponding to the 25-75 nmi longline exclusion zone around the main Hawaiian Islands, to recognize the insular false killer whale population as a separate stock for management. This boundary may be revised in the future as additional information becomes available. Comparisons amongst false killer whales sampled at Palmyra Atoll and those sampled in the waters of the pelagic ENP, Panama and Mexico also **Figure 1.** False killer whale sighting locations during standardized shipboard surveys of the Hawaiian U.S. EEZ (2002, black diamond, Barlow 2006), the Palmyra U.S. EEZ and pelagic waters of the central Pacific south of the Hawaiian Islands (2005, open squares, Barlow and Rankin 2007). Outer lines represent approximate boundary of U.S. EEZs; shaded gray area is the 25-75nmi longline exclusion zone around the Main Hawaiian Islands, proposed as a false killer whale stock boundary. **Figure 2.** False killer whale sighting locations during 2000-2004 boat-based surveys (+) (Baird et al. 2005) and 1993-2003 aerial surveys (●) (Mobley et al. 2000, Mobley 2001, 2002, 2003, 2004) around the Main Hawaiian Islands. See Appendix 2 for details on timing and location of survey effort. reveal some level of restricted gene flow, although the sample size remains low for robust comparisons (Chivers et al. 2007)..Efforts are currently underway to obtain and analyze additional tissue samples of false killer whales for further studies of population structure in the North Pacific Ocean. For the Marine Mammal Protection Act (MMPA) stock assessment reports, there are currently three Pacific Islands Region management stocks (Chivers et al. 2008): 1) the Hawaii Insular Stock, which includes animals inhabiting waters within the 25-75 nmi longline exclusion zone around the main Hawaiian Islands, and 2) the Hawaii Pelagic Stock, which includes false killer whales inhabiting the waters of the U.S. EEZ of Hawaii outside of the 25-75 nmi longline exclusion zone around the main Hawaiian Islands and 3) the Palmyra Stock, which includes false killer whales found within the U.S. EEZ of Palmyra Atoll. Estimates of abundance, potential biological removal, and status determinations for these three stocks are presented separately below. ## **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY** Fishery Information Interactions with cetaceans have been reported for Hawaiian pelagic fisheries, and false killer whales have been identified in fishermen's logs and NMFS observer records as taking catches from pelagic longlines (Nitta and Henderson 1993, NMFS/PIR unpublished data). They have also been observed feeding on mahi mahi, *Coryphaena hippurus*, and yellowfin tuna, *Thunnus albacares*, and they have been reported to take large fish (up to 70 pounds) from the trolling lines of both commercial and recreational fishermen (Shallenberger 1981). Between 1994 and 2006, 24 false killer whales were observed hooked or entangled in the Hawaii-based longline fisheries, with approximately 4-34% of all effort observed (Forney and Kobayashi 2007, Forney and McCracken 2008). additional unidentified cetaceans, which may have been false killer whales based on the observer's descriptions, were also taken (hooked or entangled) in this fishery, but were not included in this analysis (Figure 3; Forney and Kobayashi 2007, Forney and McCracken 2008). During 28,542 observed sets, the average interaction rate of false killer whales was 0.83 false killer whales per 1,000 sets. Two of the false killer whales were killed, two were considered not seriously injured, and all others caught were considered seriously **Figure 3.** Locations of observed false killer whale takes (filled symbols) and possible takes of this species (open symbols) in the Hawaii-based longline fishery, 2002-2006. Stars are locations of genetic samples from fishery-caught false killer whales. Solid lines represent the U.S. EEZ; shaded gray area is the 75nmi boundary around the Main Hawaiian Islands. Set locations in this fishery are summarized in Appendix 1. injured, based on an evaluation of the observer's description of the interaction (Forney and Kobayashi, 2007, Forney and McCracken 2008) and following established guidelines for assessing serious injury in marine mammals (Angliss and DeMaster 1998). Average 5-yr estimates of annual mortality and serious injury for 2002-2006 are 7.6 (CV = 0.43) false killer whales outside of U.S. EEZs, 5.7 (CV = 0.64) within the Hawaiian Islands EEZ, and 1.2 (CV = 0.67) within the EEZ of Palmyra Atoll (Table 1). Total estimated annual mortality and serious injury for all U.S. EEZs combined averaged 7.0 (CV = 0.54) between 2002 and 2006. Since 2001, the Hawaii-based longline fishery has undergone a series of regulatory changes, primarily to protect sea turtles (NMFS 2001). Potential impacts of these regulatory changes on the rate of false killer whale interactions are unknown. **Table 1.** Summary of available information on incidental mortality and serious injury of false killer whales (Pacific Islands Stock Complex) in commercial fisheries, within and outside of selected U.S. EEZs (Forney and McCracken 2008). Mean annual takes are based on 2002-2006 data unless otherwise indicated. | Fishery | | Percent | Observed and estimated mortality and serious injury of false killer whales, by EEZ region | | | | | | | | | | |--|---|------------------|---|------------------|---|---------------------------------|------------------|--|---------------------------------|------------------|-------------------------|---------------------------------| | | Observe | | | | Hawaiian Islands EEZ | | | Palmyra Atoll EEZ | | | | | | Name | Year | Data
Type | Covera
ge | Obs. | Estimated (CV) | Mean
Annual
Takes
(CV) | Obs. | Estimated (CV) | Mean
Annual
Takes
(CV) | Obs. | Palmyra Atoll EEZ | Mean
Annual
Takes
(CV) | | Hawaii-
based
longline
fisheries ² | 2002
2003
2004
2005
2006 | observer
data | 24.8%
21.9%
25.4%
34.2%
25.5% | 3
0
3
1 | 14 (0.40)
0 (-)
14 (0.43)
3 (2.76)
7 (1.42) | 7.6
(0.43) | 0
2
3
1 | 0 (-)
7 (0.83)
12 (0.46)
3 (3.16)
7 (1.84) | 5.7
(0.64) | 2
0
0
0 | 0 (-)
0 (-)
0 (-) | 1.2 (0.67) | | M | Minimum total annual takes within U.S. EEZ waters | | | | | | | | 7.0 (| 0.54) | 1 | 1 | All false killer whales taken within the Hawaiian EEZ were obtained >75 nmi from the Main Hawaiian Islands, and genetic analyses for the two available samples indicated these animals were part of the Hawaii Pelagic Stock. Furthermore the longline fishery is, for the most part, prohibited from operating within about 75 nmi of the Main Hawaiian Islands. Therefore, all Hawaiian Islands EEZ takes of false killer whales are considered to be from the Hawaii Pelagic Stock. #### HAWAII INSULAR STOCK #### POPULATION SIZE A recent mark-recapture study of photo-identification data obtained during 2000-2004 around the main Hawaiian Islands produced an estimate of 123 (CV=0.72) false killer whales (Baird et al. 2005). This updates an estimate of 121 (CV=0.47) made by Mobley et al. (2000) based on 1994-1998 aerial surveys. Both estimates apply only to Hawaii Insular Stock because surveys were conducted within 75 nmi of the Main Hawaiian Islands. #### **Minimum Population Estimate** The minimum population estimate for the Hawaii Insular stock false killer whales is the number of distinct individuals identified in this population during the 2002-2004 photo-identification studies, 76 individuals (Baird et al. 2005). This is similar to the log-normal 20th percentile of the mark-recapture abundance estimate, 71 false killer whales. #### **Current Population Trend** No data are available on current population trend. #### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES No data are available on current or maximum net productivity rate for this species in Hawaiian waters. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for the insular Hawaii false killer whale stock is calculated as the minimum population size (76) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 0.50 (for a stock of unknown status with no documented human-caused mortality and serious injury; see Wade and Angliss 1997), resulting in a PBR of 0.8 false killer whales per year. #### STATUS OF STOCK The status of false killer whales in insular Hawaiian waters (within 75 nmi) relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species, although a high incidence of fin disfigurements in this stock (Baird and Gorgone 2005) indicate that interactions with fisheries may be of concern. They are not listed as "threatened" or "endangered" under the Endangered Species Act (1973), nor as "depleted" under the MMPA. This stock is not considered "strategic" under the 1994 amendments to the MMPA because there has been no documented human-caused mortality or serious injury of false killer whales belonging to the Hawaii Insular
Stock. ² The Hawaii-based longline fisheries include a shallow-set fishery (with 100% observer coverage since 2004) and a deep-set fishery (with about 20% observer coverage). No false killer whales were observed killed or injured in the shallow-set fishery during 2002-2006. #### **HAWAII PELAGIC STOCK** #### POPULATION SIZE Analyses of a 2002 shipboard line-transect survey of the Hawaiian Islands EEZ (HICEAS survey) resulted in an abundance estimate of 236 (CV=1.13) false killer whales (Barlow 2006) outside of 75 nm of the Main Hawaiian Islands. A recent re-analysis of the HICEAS data using improved methods and incorporating additional sighting information obtained on line-transect surveys south of the Hawaiian EEZ during 2005, resulted in a revised estimate of 484 (CV=0.93) false killer whales within the Hawaiian Islands EEZ outside of 75 nmi of the Main Hawaiian Islands (Barlow & Rankin 2007). This is the best available abundance estimate for the Hawaii Pelagic Stock of false killer whales. #### **Minimum Population Estimate** The log-normal 20th percentile of the 2002 abundance estimate for the Hawaiian Islands EEZ outside of 75 nmi from the Main Hawaiian Islands (Barlow & Rankin 2007) is 249 false killer whales. #### **Current Population Trend** No data are available on current population trend. #### **CURRENT AND MAXIMUM NET PRODUCTIVITY RATES** No data are available on current or maximum net productivity rate for this species in Hawaiian waters. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for the Hawaii Pelagic Stock of false killer whale is calculated as the minimum population size (249) times one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$ of 4%) times a recovery factor of 0.45 (for a stock of unknown status with a Hawaiian Islands EEZ mortality and serious injury rate CV >0.60; Wade and Angliss 1997), resulting in a PBR of 2.2 false killer whales per year. #### STATUS OF STOCK The status of the Hawaii Pelagic Stock of false killer whale relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act (1973), nor as "depleted" under the MMPA. Because the rate of mortality and serious injury to false killer whales within the Hawaiian Islands EEZ and outside of 75 nmi in the Hawaii-based longline fishery (5.7 animals per year) exceeds the PBR (2.2), this stock is considered a "strategic stock" under the 1994 amendments to the MMPA. The total fishery mortality and serious injury for Hawaiian false killer whales cannot be considered to be insignificant and approaching zero, because it exceeds the PBR. Furthermore, additional injury and mortality of false killer whales is known to occur in U.S and international longline fishing operations in international waters, and the potential effect on the Hawaii Pelagic Stock stock is unknown. #### PALMYRA STOCK #### POPULATION SIZE Recent line transect surveys in the U.S. EEZ waters of Palmyra Atoll produced an estimate of 1,329 (CV = 0.65) false killer whales (Barlow & Rankin 2007). This is the best available abundance estimate for false killer whales within the Palmyra Atoll EEZ. #### **Minimum Population Estimate** The log-normal 20th percentile of the 2002 abundance estimate for the Palmyra Atoll EEZ (Barlow & Rankin 2007) is 806 false killer whales. #### **Current Population Trend** No data are available on current population trend. #### **CURRENT AND MAXIMUM NET PRODUCTIVITY RATES** No data are available on current or maximum net productivity rate for this species in Palmyra Atoll waters. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for the Palmyra Atoll false killer whale stock is calculated as the minimum population size (806) $\underline{\text{times}}$ one half the default maximum net growth rate for cetaceans (½ of 4%) $\underline{\text{times}}$ a recovery factor of 0.45 (for a stock of unknown status with a mortality and serious injury rate CV > 0.60; Wade and Angliss 1997), resulting in a PBR of $\overline{7.2}$ false killer whales per year. #### STATUS OF STOCK The status of false killer whales in Palmyra Atoll EEZ waters relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act (1973), nor as "depleted" under the MMPA. The rate of mortality and serious injury to false killer whales within the Palmyra Atoll EEZ in the Hawaii-based longline fishery (1.2 animals per year) does not exceed the PBR (7.2) for this stock and thus, this stock is not considered "strategic" under the 1994 amendments to the MMPA. The total fishery mortality and serious injury for Palmyra Atoll false killer whales is greater than 10% of the PBR and, therefore, cannot be considered to be insignificant and approaching zero. Additional injury and mortality of false killer whales is known to occur in U.S and international longline fishing operations in international waters, and the potential effect on the Palmyra stock is unknown. #### REFERENCES - Angliss, R. P. and D. P. DeMaster. 1998. Differentiating Serious and Non-Serious Injury of Marine Mammals Taken Incidental to Commercial Fishing Operations: Report of the Serious Injury Workshop 1_2 April 1997, Silver Spring, Maryland. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-13. 48 pp. - Baird, R. W., Ligon, A. D., Hooker, S. K., and A. M. Gorgone. 2001. Subsurface and nighttime behaviour of pantropical spotted dolphins in Hawai'i. Can. J. Zool. 79:988-996. - Baird, R.W., McSweeney D.J., Webster, D.L., Gorgone, A.M., and Ligon, A.D. 2003. Studies of odontocete population structure in Hawaiian waters: Results of a survey through the main Hawaiian Islands in May and June 2003. Report prepared under contract #AB133F-02-CN-0106 to the Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA. 10p. - Baird, R.W., A.M. Gorgone, D.L. Webster, D.J. McSweeney, J.W. Durban, A.D. Ligon, D.R. Salden, and M.H. Deakos. 2005. False killer whales around the Main Hawaiian Islands: An assessment of inter-island movements and population size using individual photo-identification. Contract Report JJ133F04SE0120 prepared for the Pacific Islands Fisheries Science Center, National Marine Fisheries Service, 2570 Dole Street, Honolulu, Hawaii, 96822. 24pp. - Baird, R.W., and A.M. Gorgone. 2005. False killer whale dorsal fin disfigurements as a possible indicator of long-line fishery interactions in Hawaiian waters. Pacific Science 59:593-601 - Barlow, J. 2006. Cetacean abundance in Hawaiian waters estimated from a summer/fall survey in 2002. Marine Mammal Science 22: 446–464. - Barlow, J. and S. Rankin. 2007. False killer whale abundance and density: Preliminary estimates for the PICEAS study area south of Hawaii and new estimates for the US EEZ around Hawaii. Administrative Report LJ-07-02. Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037. - Chivers, S. J., R. W. Baird, D. J. McSweeney, D. L. Webster, N. M. Hedrick, and J. C. Salinas. 2007. Genetic variation and evidence for population structure in eastern North Pacific false killer whales (Pseudorca crassidens). Can. J. Zool. 85: 783-794. - Chivers, S. J., K. A. Forney and D. W. Johnston. 2008. A proposal to revise Hawaiian Stock boundaries for false killer whales, Pseudorca crassidens. Pacific Scientific Review Group Working Paper PSRG-2008-15 Revised 4 January 2008. - Ferguson, M. C. and J. Barlow. 2003. Addendum: Spatial distribution and density of cetaceans in the eastern tropical Pacific Ocean based on summer/fall research vessel surveys in 1986-96. Administrative Report LJ-01-04 (addendum), Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037. - Forney, K.A. and D. R. Kobayashi. 2007. Updated estimates of mortality and injury of cetaceans in the Hawaii-based longline fisheries, 1994-2005. NOAA Tech Memo NMFS-SWFSC-412. 30p.. - Forney, K. A. and McCracken, M. 2008. Preliminary estimates of cetacean injury and mortality in Hawaii-based longline fisheries during 2006. NOAA, NMFS, Southwest Fisheries Science Center Administrative Report, in prep. - Johnston, D. W., J. Robbins, M. E. Chapla, D. K. Mattila and K. R. Andrews. In Press. Diversity, habitat - associations and stock structure of odontocete cetaceans in the waters of American Samoa, 2003-2006. Journal of Cetacean Research and Management. - Kobayashi, D. R. and K. E. Kawamoto. 1995. Evaluation of shark, dolphin, and monk seal interactions with Northwestern Hawaiian Island bottom-fishing activity: a comparison of two time periods and an estimate of economic impacts. Fisheries Research 23: 11-22. - Maldini, D., L. Mazzuca, and S. Atkinson. 2005. Odontocete stranding patterns in the Main Hawaiian Islands (1937-2002): How do they compare with live animal surveys? Pacific Science 59(1):55-67. - Miyashita, T. 1993. Abundance of dolphin stocks in the western North Pacific taken by the Japanese drive fishery. Rep. Int. Whal. Commn. 43:417-437. - Mobley, J.R., Jr, S. S. Spitz, K. A. Forney, R. A. Grotefendt, and P. H. Forestall. 2000. Distribution and abundance of odontocete species in Hawaiian waters: preliminary results of 1993-98 aerial surveys Admin. Rep. LJ-00-14C. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 26 pp. - Mobley, J.R. 2001. Results of 2001 aerial surveys north of Kauai. Report to North Pacific Acoustic Laboratory program. 20 pp. Available as downloadable pdf file at: http://socrates.uhwo.hawaii.edu/SocialSci/jmobley/2001NPAL.pdf -
Mobley, J.R. 2002. Results of 2002 aerial surveys north of Kauai. Report to North Pacific Acoustics Laboratory program. 20 pp. Available as downloadable pdf file at: http://socrates.uhwo.hawaii.edu/SocialSci/jmobley/2002NPAL.pdf - Mobley, J.R. 2003. Results of 2003 aerial surveys north of Kauai. Report to North Pacific Acoustics Laboratory program. 20 pp. Available as downloadable pdf file at: http://socrates.uhwo.hawaii.edu/SocialSci/jmobley/2003NPAL.pdf - Mobley, J.R. 2004. Results of 2004 aerial surveys north of Kauai. Report to North Pacific Acoustics Laboratory program. 25 pp. Available as downloadable pdf file at: http://socrates.uhwo.hawaii.edu/SocialSci/jmobley/2004NPAL.pdf - Nitta, E. 1991. The marine mammal stranding network for Hawaii: an overview. *In*: J.E. Reynolds III, D.K. Odell (eds.), Marine Mammal Strandings in the United States, pp.56-62. NOAA Tech. Rep. NMFS 98, 157 pp. - Nitta, E. and J. R. Henderson. 1993. A review of interactions between Hawaii's fisheries and protected species. Mar. Fish. Rev. 55(2):83-92. - NMFS, Pacific Islands Region, Observer Program, 1602 Kapiolani Blvd, Suite 1110, Honolulu, HI 96814. - NMFS, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92027. - NMFS Western Pacific Pelagic Fisheries Biological Opinion 2001. Available from Pacific Islands Region, 1602 Kapiolani Blvd, Suite 1110, Honolulu, HI 96814 (http://swr.nmfs.noaa.gov/pir). - Norris, K. S., B. Würsig, R. S. Wells, and M. Würsig. 1994. The Hawaiian Spinner Dolphin. University of California Press, 408 pp. - Norris, K. S. and T. P. Dohl. 1980. Behavior of the Hawaiian spinner dolphin, *Stenella longirostris*. Fish. Bull. 77:821-849. - Perrin, W.F., G. P. Donovan and J. Barlow. 1994. Gillnets and Cetaceans. Rep. Int. Whal. Commn., Special Issue 15, 629 pp. - Shallenberger, E.W. 1981. The status of Hawaiian cetaceans. Final report to U.S. Marine Mammal Commission. MMC-77/23, 79pp. - Stacey, P. J., S. Leatherwood, and R. W. Baird. 1994. Pseudorca crassidens. Mamm. Spec. 456:1-6. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. - Wade, P. R. and T. Gerrodette. 1993. Estimates of cetacean abundance and distribution in the eastern tropical Pacific. Rep. Int. Whal. Commn. 43:477-493. The Marine Mammal Protection Act (MMPA) requires NMFS to publish a list of commercial fisheries (<u>List Of Fisheries or "LOF"</u>) and classify each fishery based on whether incidental mortality and serious injury of marine mammals is frequent (Category I), occasional (Category II), or unlikely or unknown (Category III). The LOF is published annually in the Federal Register. The categorization of a fishery in the LOF determines whether participants in that fishery are subject to certain provisions of the MMPA, such as registration, observer coverage, and take reduction plan requirements. The categorization criteria as they appear in the LOF is reprinted below: The fishery classification criteria consist of a two-tiered, stock-specific approach that first addresses the total impact of all fisheries on each marine mammal stock, and then addresses the impact of individual fisheries on each stock. This approach is based on consideration of the rate, in numbers of animals per year, of incidental mortalities and serious injuries of marine mammals due to commercial fishing operations relative to the Potential Biological Removal (PBR) level for each marine mammal stock. The MMPA (16 U.S.C. 1362 (20)) defines the PBR level as the maximum number of animals, not including natural mortalities, that may be removed from a marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population. This definition can also be found in the implementing regulations for section 118 at 50 CFR 229.2. Tier 1: If the total annual mortality and serious injury across all fisheries that interact with a stock is less than or equal to 10 percent of the PBR level of the stock, all fisheries interacting with the stock would be placed in Category III. Otherwise, these fisheries are subject to the next tier (Tier 2) of analysis to determine their classification. Tier 2, Category I: Annual mortality and serious injury of a stock in a given fishery is greater than or equal to 50 percent of the PBR level. Tier 2, Category II: Annual mortality and serious injury of a stock in a given fishery is greater than 1 percent and less than 50 percent of the PBR level. Tier 2, Category III: Annual mortality and serious injury of a stock in a given fishery is less than or equal to 1 percent of the PBR level. While Tier 1 considers the cumulative fishery mortality and serious injury for a particular stock, Tier 2 considers fishery-specific mortality and serious injury for a particular stock. Additional details regarding how the categories were determined are provided in the preamble to the final rule implementing section 118 of the MMPA (60 FR 45086, August 30, 1995). Since fisheries are categorized on a per-stock basis, a fishery may qualify as one Category for one marine mammal stock and another Category for a different marine mammal stock. A fishery is typically categorized on the LOF at its highest level of classification (e.g., a fishery that qualifies for Category III for one marine mammal stock and for Category II for another marine mammal stock will be listed under Category II). ### Other Criteria That May Be Considered In the absence of reliable information indicating the frequency of incidental mortality and serious injury of marine mammals by a commercial fishery, NMFS will determine whether the incidental serious injury or mortality qualifies for Category II by evaluating other factors such as fishing techniques, gear used, methods used to deter marine mammals, target species, seasons and areas fished, qualitative data from logbooks or fisher reports, stranding data, and the species and distribution of marine mammals in the area, or at the discretion of the Assistant Administrator for Fisheries (50 CFR 229.2). This appendix describes commercial fisheries that occur in California, Oregon, Washington, and Hawaiian waters and that interact or may interact with marine mammals. The first three sections describe sources of marine mammal mortality data for these fisheries. The fourth section describes the commercial fisheries for these states. A list of all known fisheries for these states was published as a proposed rule in the Federal Register, 71 FR 20941, 24 April 2006. #### 1. Sources of Mortality/Injury Data There are three major sources of marine mammal mortality/injury data for the active commercial fisheries in California, Oregon, and Washington. These sources are the NMFS Observer Programs, the Marine Mammal Authorization Program (MMAP) data, and the NMFS Marine Mammal Stranding Network (MMSN) data. Each of these data sources has a unique objective. Data on mammal mortality and injury are reported to the MMAP by fishers in any commercial fisheries. Marine mammal mortality and injury is also monitored by the NMFS Marine Mammal Stranding Network (MMSN). Data provided by the MMSN is not duplicated by either the NMFS Observer Program or MMAP reporting. Human-related data from the MMSN include occurrences of mortality due to entrainment in power station intakes, ship strikes, shooting, evidence of net fishery entanglement (net remaining on animal, net marks, severed flukes), and ingestion of hooks. #### 2. Marine Mammal Reporting from Fisheries In 1994, the MMPA was amended to implement a long-term regime for managing mammal interactions with commercial fisheries (the Marine Mammal Authorization Program, or MMAP). Logbooks are no longer required - instead vessel owners/operators in any commercial fishery (Category I, II, or III) are required to submit one-page pre-printed reports for all interactions (including those that occur while an observer is onboard) resulting in an injury or mortality to a marine mammal. The report must include owner/operator's name and address, vessel name and ID, where and when the interaction occurred, the fishery, species involved, and type of injury (if the animal was released alive). These postage-paid report forms are mailed to all Category I and II fishery participants that have registered with NMFS, and must be completed and returned to NMFS within 48 hours of returning to port for trips in which a marine mammal injury or mortality occurred. The number of self-reported marine mammal interactions is considerably lower than the number reported by fishery observers, even though observer reports are typically based on 20% observer effort. For example, from 2000-2004, there were 112 fisher self-reports of marine mammal interactions in the California swordfish/thresher shark drift gillnet fishery. This compares with 141 observed interactions over the same period, based on only 20% observer coverage. This suggests that fisher self-reports are grossly underreported. A summary comparing fisher self-reports and observer reports of marine mammal interactions for the swordfish drift gillnet fishery is given in Table 1 of this Appendix. # 3. NMFS Marine Mammal Stranding Network data From 2000-2004, there were 1,022 cetacean and 13,215 pinniped strandings recorded in California, Oregon, and Washington states. Approximately 10% of all cetacean and 6% of all pinniped strandings showed evidence of human-caused mortality during this period. Human-related causes of mortality include: entrainment in power station intakes, shooting, net fishery entanglement, and hook/line, set-net and trap fishery interaction. A species summary of all cetacean and pinniped strandings for the period 2000-2004 is given in Table 2 of this Appendix. ### 4. Fishery Descriptions #### Category I, CA/OR thresher shark/swordfish drift gillnet fishery (≥14 inch mesh)
Note: NMFS has proposed reclassifying this fishery to a Category I, based on a revised PBR level for short finned pilot whales and an observed take of a short finned pilot whale in this fishery in 2003 (Federal Register 69 FR 70094, 02 December 2004). Number of permit holders: The number of eligible permit holders in California for 2000 2004 2002-2006 are 127, 114, 106, 99 100, and 96, 90, and 88, respectively (data source: California Department of Fish and Game website: www.dfg.ca.gov/licensing). Permits are non-transferable and are linked to individual fishermen, not vessels. Number of active permit holders: The number of vessels active in this fishery from 2000-2004 2002-2006 were 78, 69, 50, 43, 43, 40, and 43 respectively. Information on the number of permit holders is obtained from the Status of the U.S. west coast fisheries for Highly Migratory Species through 2004; Stock Assessment and Fishery Evaluation report available from the Pacific Fishery Management Council website (www.pcouncil.org) and the California Department of Fish and Game. Total effort: Both estimated and observed effort for the drift-net fishery during the calendar years 1990 through 2002 2006 are shown in Figure 7 2. In 2004 there was an estimated 1,084 effort days, where an effort day is defined to be one day of effort by one vessel. (In this fishery, 1 effort day is equivalent to 1 set.). There were 223 (41 trips) observed effort days in 2004. <u>Geographic range:</u> Effort in this fishery ranges from the U.S./Mexico border north to waters off the state of Oregon. For this fishery there are area-season closures (see below). Figures 1-5 show locations of observed sets and Figure 6 shows approximate locations of observed marine mammal entanglements for the period 1998-2002. Seasons: This fishery is subject to season-area restrictions. From February 1 to May 15 effort must be further than 200 nautical miles (nmi) from shore; from May 16 to August 14, effort must be further than 75 nmi from shore, and from August 15 to January 31 there is only the 3 nmi off-shore restriction for all gillnets in southern California (see angel shark/halibut fishery below). The majority of the effort occurs from October through December. A season-area closure to protect leatherback sea turtles was implemented in this fishery in August 2001. The closure area prohibits drift gillnet fishing from August 15 through November 15, in the area bounded by straight lines from Point Sur, California (N36° 17') to N 34° 27' W 123° 35', west to W129°, north to N 45°, then east to the Oregon coast. In March 2006, the Pacific Fishery Management Council approved a recommendation to NMFS to reopen the current closure area under an exempted fishing permit (EFP). The EFP requires 100% observer coverage and limits the number of sets fished to 300. Additionally, fishing in the area would cease prior to the 300 set limit if 2 leatherback turtles are entangled. In addition, fishing would cease if one mortality or serious injury is documented for any of the following species: gray whale, short-finned pilot whale, sperm whale, fin whale, humpback whale, and minke whale. NMFS may modify this recommendation and will make a final decision on the EFP in 2006. An additional season-area closure south of Point Conception and east of W120 degrees longitude is effective during the months of June, July, and August during El Niño years to protect loggerhead turtles (Federal Register, 68 FR 69962, 16 December 2003). <u>Gear type and fishing method:</u> Typical gear used for this fishery is a 1000 fathom gillnet with a stretched mesh size typically ranging from 18-22 inches (14 inch minimum). The net is set at dusk and allowed to drift during the night after which, it is retrieved. The fishing vessel is typically attached to one end of the net. Soak duration is typically 12-14 hours depending on the length of the night. Net extender lengths of a minimum 36 ft. became mandatory for the 1997-1998 fishing season. The use of acoustic warning devices (pingers) became mandatory 28 October 1997. <u>Regulations:</u> The fishery is managed under a Fishery Management Plan (FMP) developed by the Pacific Fishery Management Council and NMFS. <u>Management type:</u> The drift-net fishery is a limited entry fishery with seasonal closures and gear restrictions (see above). The state of Oregon restricts landing to swordfish only. <u>Comments:</u> This fishery has had a NMFS observer program in place since July 1990. Due to bycatch of strategic stocks including short-finned pilot whale, beaked whales, sperm whale and humpback whale, a Take Reduction Team was formed in 1996. Since then, the implementation of increased extender lengths and the deployment of pingers have substantially decreased cetacean entanglement. The fraction of active vessels in this fishery that are not observed owing to a lack of berthing space for observers has been increasing as larger vessels drop out of this fishery. Category I¹, CA angel shark/halibut/white seabass and other species set gillnet fishery (>3.5 inch mesh). Note: The "CA angel shark/halibut set gillnet fishery" and "CA other species, large mesh (>3.5 in) set gillnet fishery" were previously listed as separate fisheries. Angel shark and h This fishery has not targeted angel shark since 1994, when regulatory changes resulted in nets being fished >3 nmi from shore in southern California. Thus, there is a proposed name change to this fishery to reflect current fishing practices. Halibut are typically targeted using 8.5 inch mesh while the remainder of the fishery targets white seabass and yellowtail using 6.5 inch mesh. In recent years, there has been an increasing number of 6.0-6.5 inch mesh sets fished using drifting methods; this component is now identified as a separate fishery (see "CA yellowtail, barracuda, white seabass, and tuna drift gillnet fishery (>3.5 and <14 in mesh)" fishery described below). <u>Number of permit holders:</u> There is no specific permit category for this fishery. Overall, the current number of legal permit holders for gill and trammel nets, excluding swordfish drift gillnets and herring gillnets for 2000 2004 2002-2006 ¹ Due to the closure of the fishery in central California, which has reduced the threat to stocks of harbor porpoise in this region, the draft 2009 NMFS MMPA List of Fisheries proposes to recategorize this fishery to 'Category II'. #### Appendix 1. Description of U.S. Commercial Fisheries are, respectively, 232, 223, 209, 193, and 187, 172, and 166, respectively. Information on permit numbers is available from the California Department of Fish and Game website (http://www.dfg.ca.gov/licensing). Number of active permit holders: Based on logbook data, there were at least 41 62 active permit holders from April 2003 to April 2004 during the period 2002-2006. Annual participation in the fishery appears to have declined, as the number of active permit holders by individual year (43, 42, 41, 31, 28) has declined. Total effort: From 1999-2003, estimated fishing effort (from logbooks) in this fishery has been 4,173, 3,736, 3,388, 3,220, and 2,788 days, respectively. Fishing effort in the halibut fishery has declined from over 3,200 sets in 2002 to approximately 1,400 sets in 2006. A summary of estimated fishing effort and observer coverage for the years 1990-2003 is shown in Figure 8. Effort in the white seabass and yellowtail portion of this fishery from 1999-2003 were 460, 657, 551,733 and 789 days, respectively has ranged between 456 and 948 days annually for the period 2002-2006. A portion of the effort in the white seabass and yellowtail fishery utilizes drifting nets (see "CA yellowtail, barracuda, white seabass, and tuna drift gillnet fishery (>3.5 and <14 in mesh)" fishery description in the Category II fishery section below). Geographic range: Effort in this fishery previously ranged from the U.S./Mexico border north to Monterey Bay and was localized in more productive areas: San Ysidro, San Diego, Oceanside, Newport, San Pedro, Ventura, Santa Barbara, Morro Bay, and Monterey Bay. Fishery effort is now predominantly in the Ventura Flats area off of Ventura, the San Pedro area between Pt. Vicente and Santa Catalina Island and in the Monterey Bay area. The central California portion of the fishery from Point Arguello to Point Reyes has been closed since September 2002 when a ban on gillnets inshore of 60 fathoms took effect. <u>Seasons:</u> This fishery operates year round. Effort generally increases during the summer months and declines during the last three months of a year. <u>Gear type and fishing method:</u> Typical gear used for this fishery is a 200 fathom gillnet with a stretched mesh size of 8.5 inches. The component of this fishery that targets white seabass and yellowtail utilizes 6.5 inch mesh. The net is generally set during the day and allowed to soak for up to 2 days. Soak duration is typically 8-10, 19-24, or 44-49 hours. The depth of water ranges from 15-50 fathoms with most sets in water depths of 15-35 fathoms. Regulations: This fishery is managed by the California Dept. of Fish and Game in accordance with state and federal laws. Management type: The halibut/angel shark set-net fishery is a limited entry fishery with gear restrictions and area closures. Comments: An observer program for the halibut/angel shark portion of this fishery operated from 1990-94 and was discontinued after area closures were implemented in 1994, which prohibited gillnets within 3 nmi of the mainland and within 1 nmi of the Channel Islands in southern California. NMFS re-established an observer program for this fishery in Monterey Bay in 1999-2000 due to a suspected increase in harbor porpoise mortality in Monterey Bay. In 1999 and 2000, fishery mortality exceeded PBR for the Monterey Bay harbor porpoise stock, and the stock is currently which at that time, was designated as strategic [the stock is currently non-strategic]. In the autumn
of 2000, the California Department of Fish and Game implemented the first in a series of emergency area closures to set gillnets within 60 fathoms along the central California coast in response to concerns over mortality of common murres and threats to sea otters. This effectively reduced fishing effort to negligible levels in 2001 and 2002 in Monterey Bay. A ban on gill and trammel nets inside of 60 fathoms from Point Reyes to Point Arguello became effective in September 2002. Mortality of marine mammals continues in this the southern California portion of this fishery, as evidenced by fisher self-reports under the Marine Mammal Authorization Program (MMAP) from 2000-2005. During this time, fishermen reported mortalities totalling 60 California sea lions, 20 harbor seals, one northern elephant seal and one unidentified common dolphin. NMFS plans on reinitiating some level of observer coverage in this fishery in 2006. NMFS renewed observer coverage in halibut/white seabass set gillnet fishery in 2006 and through 2007, observers recorded bycatch data from 260 sets. No cetaceans were observed entangled during this period, but there were 34 California sea lions, two harbor seals, and one unidentified pinniped observed killed. Category I, Hawaii swordfish, tuna, billfish, mahi mahi, wahoo, and oceanic shark longline/set line fishery.² <u>Note:</u> The classification of this fishery was elevated to Category I in 2004 based on revised PBR levels of false killer whales and observed false killer whale mortalities in this fishery (Federal Register 69 FR 48407 1, 10 August 2004). <u>Number of permit holders</u>: The number of Hawaii longline limited access permit holders is 164. Not all such permits are renewed and used every year (approximately 126 were renewed in 2003). Most holders of Hawaii longline limited access permits are based in, or operate out of, Hawaii. Longline general permits are not limited by number. Approximately 67 longline general permits were issued in 2003, about 48 of which were active. In 2003 all but two holders of longline general permits were based in, or operated out of, American Samoa. The remaining two, neither of which was active in 2003, were based in the Mariana Islands (Federal Register 69 FR 17329, 2 April 2004). <u>Number of active permit holders:</u> From 1998-2002 there were 115, 122, 125, 101, and 102 vessels actively fishing, respectively. There were 126 permits renewed in 2003 (Federal Register 69 FR 17329, 2 April 2004,). In 2004, there were 125 Hawaii longline limited access permits renewed, with 119 active. In 2004, there were 40 active permits in American Samoa. <u>Total effort:</u> For the years 1998-2002, there were 1,181, 1,165, 1,135, 1,075, and 1,193 trips made respectively. The number of hooks set has steadily increased since 1997 (15.5 million) and peaked in 2002 with 27 million hooks set. In 2002, most effort occurred within the U.S. EEZ (approximately 15 million hooks set), while 12 million hooks were set outside the U.S. EEZ. At Kingman Reef and Palmyra Atoll there were 2.1 million hooks set in 2002. In 2003, there were 1,214 trips recorded (with tuna as the target species). There were a total of 29.8 million hooks set in 2003, of these, 15 million occurred outside the U.S. EEZ, 11 million within the Main Hawaiian Islands EEZ, 2.7 million within the Northwest Hawaiian Islands EEZ, and the remaining 0.9 million within other U.S. possession EEZs. The preliminary estimate of hooks fished in 2004 is 32 million hooks. 2003 logbook data for American Samoa consisted of 932 trips by 51 vessels, which made 6,220 sets, with 14.2 million hooks fished. Preliminary logbook data from 2004 in American Samoa consists of 623 trips by 40 vessels, which made 4,804 sets, with 11.6 million hooks fished. <u>Geographic range</u>: This fishery encompasses a huge geographic range extending North-South from 40° N to the equator and East-West from Kure Atoll to as far as 135° W. Fishing for swordfish generally occurs north of Hawaii, (as much as 2,000 miles from Honolulu), whereas fishing for tunas occurs around the Main Hawaiian Islands (MHI) and south of the Hawaiian Islands. New regulations published in 2004 lift previous area closures north of the equator. Seasons: This fishery operates year-round. Effort is generally lower in the third quarter of the year. Gear type: The basic unit of gear is the main line which is made of monofilament and stored on a large hydraulic reel. Eight hundred to 1000 hooks are attached to 30 to 40 miles of main line on a typical fishing day. Shallow sets for swordfish and deep sets for tuna are fished with a requirement that the fishermen must declare prior to departure which set type will be employed. (There was no Hawaii-based shallow set swordfish fishery from 2001-2003). All shallow swordfish sets are required to utilize size 18/0 circle hooks with a 10 degree offset and mackerel bait (the use of squid bait is prohibited). Deployment and retrieval of gear must occur at night. For deep sets, all float lines must be at least 20 meters in length; with a minimum of 15 branch lines between any two floats (except basket-style longline gear which may have as few as 10 branch lines between any two floats); without the use of light sticks; and resulting in the possession or landing of no more than 10 swordfish (Xiphias gladius) at any time during a given trip. As used in this definition "float line" means a line used to suspend the main longline beneath a float and "light stick" means any type of light emitting device, including any fluorescent "glow bead", chemical, or electrically powered light that is affixed underwater to the longline gear. There are currently no Hawaii longline vessels deploying basket gear. While similar, swordfish and tuna gear differ in the depth at which it is deployed, the number of hooks deployed, and the time of day at which it is set. Both styles use a monofilament mainline that is generally 3.2- 4.0 mm in diameter that is stored, deployed, and retrieved using a large hydraulic reel (some vessels may have two). In general, swordfish gear is deployed at an average depth (deepest) of 70m, with 600-1000 hooks deployed per day (3-6 hooks between floats), and ² This fishery description was provided in part by Chris Yates (NMFS) and from published fishery regulations in the Federal Register; 69 FR 48407, published 10 August 2004. the line is set at night and hauled during daylight hours. Additionally, float lines are usually less than the required twenty meters (~10m) for tuna fishing. Because some swordfish vessels carry two reels of mainline, it is not uncommon for swordfish vessels to set as much as 60 miles of line in a day. In contrast, tuna gear is set much deeper (~200m), with 1500-2200 hooks deployed per day (20-35 hooks between floats), the line is set in the morning and hauled in the evening. In addition, tuna mainline is deployed using a hydraulic line shooter. Regulations permit a minimum of 15 hooks between floats. There is no minimum for trips targeting swordfish. The line shooter sends the line off the vessel faster than the vessel is moving creating deep arcing caternaries in the line. This allows them to target deep dwelling tunas. Swordfish mainline is set at the same speed as the vessel to keep the line in shallower depths. Finally, lightsticks are prohibited during tuna (deep set) fishing operations. These are allowed in the swordfish fishery. The leaders attached to the mainline also differ between the two fisheries. A tuna leader is usually comprised of a hook immediately followed by a length of wire (1-2 mm thick) which is attached to a weighted swivel. The rest of the tuna leader in comprised of ~2mm thick monofilament and a snap for attachment to the mainline. The swordfish gear is comprised of a 18/0 or larger circle hook attached to a ~ 10m length of ~2mm monofilament line to a weighted swivel followed by another ~10m length of ~2mm monofilament. All attachments are made using loops secured by crimps. Vessel operators are required to call NMFS for possible observer placement 72 hours prior to departure. At that time they must declare if they intend to go on a shallow-set or deep-set fishing trip. Regulations prohibiting the presence of lightsticks and float lines shorter than 20m aboard vessels on declared deep-set trips preclude fishermen from fishing trip types while at sea - additionally a vessel returning from a deep-set trip cannot land more than 10 swordfish (50 CFR 660.22). Additional requirements for seabirds went into effect 18 January 2006 for vessels fishing above 23 degrees north latitude (Federal Register 70 FR 75075, 19 December 2005). Fishermen will be given a choice between side setting and employing a suite of seabird mitigation measures. Currently, regulations require deep-setting vessels to dye their bait blue, thoroughly thaw the bait, and throw all offal on the opposite side of the vessel from which fishing operations are taking place. (There have been no observations of marine mammals feeding on offal discarded from Hawaii-based longline vessels.) Additionally, these vessels are required to use a line shooter – which they would have anyway – and at least forty-five gram weights on the line. Regulations: Effort is required to be outside of 50 nautical miles from the entire Northwestern Hawaiian islands (NWHI) because of possible protected species (monk seal) interactions. Several 25-75 mile closed areas also exist around the MHI to prevent gear conflicts with smaller fishing vessels. Current regulations require 100% observer coverage for shallow swordfish sets and 20% observer coverage for deep tuna sets. There are fleet-wide annual limits on the number of allowable sea turtle interactions in this fishery (16 leatherbacks or 17 loggerheads). The shallow set component of the fishery is closed if either threshold is reached, or is expected to be reached Federal Register 69 FR 17329, April 2,
2004. There is an annual limit of 2,120 shallow sets north of the equator. Vessel operators must obtain single shallow set certificates from NMFS, which are transferable, and valid for one calendar year. Hawaii-based longline vessels are prohibited from making more shallow-sets north of the equator during a trip than the number of valid shallow-set certificates on board the vessel. Within 72 hours of landing a pelagic management unit species, vessel operators are required to submit one valid shallow-set certificate to the Regional Adminstrator for every shallow set fished north of the equator during a fishing trip. On 14 March 2006, the Western Pacific Regional Fishery Management Council voted to initiate an emergency closure of the Hawaii longline swordfish fishery because the fishery had already reached allowable interaction levels with loggerhead turtles in 2006. The shallow set component of the fishery north of the equator was closed on 20 March 2006 (Federal Register 71 FR 14824, 24 March 2006). <u>Management type:</u> Federal limited access program. This fishery is managed under a Fishery Management Plan (FMP), developed by the Western Pacific Fishery Management Council and NMFS. <u>Comments</u>: This Hawaii longline fishery is active year-round and targets swordfish and tuna, other species are caught incidentally. Interactions with bottlenose dolphins, false killer whales, humpback whales, short-finned pilot whales, spinner dolphins, short-beaked common dolphins, pantropical spotted dolphins, Blainville's beaked whale, sperm whales, and Risso's dolphins have been documented³. Longline hooks have also been recovered from Hawaiian monk seals, but _ ³ K.A. Forney 2004. Estimates of cetacean mortality and injury in two U.S. Pacific longline fisheries, 1994-2002. Southwest Fisheries Science Center Administrative Report LJ-04-07, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 17 pp. #### Appendix 1. Description of U.S. Commercial Fisheries these were not observed during longline fishing operations. Due to interactions with protected species, especially turtles, this fishery has been observed since February 24, 1994. Initially, observer coverage was less than 5%, increased to 10% in 2000, and has exceeded 20% in 2001 and 2002. In 2003, observer coverage was 22.2% (based on vessel departures), with 6.4 million hooks observed from 3,204 sets. Observed injuries of marine mammals in this fishery in 2003 included 2 false killer whales, 1 unidentified cetacean and 1 unidentified whale. Additionally, there was one observed mortality of a bottlenose dolphin (Pacific Islands Regional Office preliminary report dated 9 February 2004). In 2004, observer coverage was 24.6% (based on vessel departures), with 7.9 million hooks observed from 3,958 sets. Observed injuries of marine mammals in this fishery in 2004 included 5 false killer whales, 1 humpback whale and 1 short-finned pilot whale. Additionally, there was one observed mortality of a false killer whale. In the shallow set component of this fishery, observer coverage in 2004 was 100% (88 sets and 76,750 hooks observed). No marine mammal interactions were observed in the shallow set component of the fishery (Pacific Islands Regional Office preliminary report dated 25 January 2005). ### Category II, CA yellowtail, barracuda, white seabass, and tuna drift gillnet fishery (>3.5 and <14 in mesh) Note: This fishery has developed recently as an offshoot of the "CA other species, large mesh (>3.5 in) set gillnet fishery" (see Category I fishery section above). Fishermen use the same gear as in the set gillnet fishery (typically 6.5 inch mesh nets, 100-200 fathoms in length, except that they instead utilize drifting nets to target white seabass and yellowtail. Albacore tuna and barracuda are also targeted in this fishery. Number of permit holders: There are approximately 24 active permit holders in this fishery. <u>Total effort:</u> From 1999 2003 2002-2006, there were 140, 173, 111, 195, and 202 221, 193, 120, 184, and 175 small-mesh drift gillnet sets fished, respectively, as determined from California Department of Fish and Game logbook data. <u>Geographic range:</u> This drift gillnet component of this fishery operates primarily south of Point Conception. Observed sets have been clustered around Santa Cruz Island, the east Santa Barbara Channel, and Cortez and Tanner Banks. Some effort has also been observed around San Clemente Island and San Nicolas Island. <u>Seasons:</u> This fishery operates year round. Targeted species is typically determined by market demand on a short-term basis. <u>Gear type and fishing method:</u> Typical gear used for this fishery is a 150-200 fathom gillnet, which is allowed to drift. The mesh size depends on the target species but typical values observed are 6.0 and 6.5 inches. Regulations: This fishery is managed by the California Dept. of Fish and Game in accordance with state and federal laws. Management type: This fishery is a limited entry fishery with gear restrictions and area closures. Comments: This fishery primarily targets white seabass and yellowtail, but also targets barracuda and albacore tuna. From 2002-2004, there have been 66 63 sets observed from 17 vessel trips. Marine mammal mortalities have included two long-beaked common dolphin and 3 California sea lions. Also, 4 California sea lions were entangled and released alive during this period. In 2003, there was one coastal bottlenose dolphin stranded with 3.5-inch gillnet wrapped around its tailstock, the responsible fishery is unknown. Observer coverage in this fishery was 12% in 2002, 10% in 2003, and 17% in 2004. ## Category II, CA swordfish longline fishery <u>Number of permit holders</u>: As recently as 2004, there were 20-30 vessels participating in the fishery. Only one vessel was active in 2005. This decline in participation was due to the prohibition in shallow set swordfishing east of W150 longitude. <u>Number of active permit holders:</u> In January 2006, there was only one vessel participating in this fishery, which fished for tuna using deep set methods outside the U.S. EEZ. The remaining vessels from this fishery now participate in the Hawaii longline fishery. ### Revised 5/15/2006 5/29/2008 #### Appendix 1. Description of U.S. Commercial Fisheries <u>Total Effort:</u> An estimated 1 - 1.5 million hooks were fished annually when 20-30 California-based vessels participated in the fishery. In 2005, there were only two trips fished by one vessel. Ten sets were observed in the first trip and it is unknown how many sets were made during the second trip because no observer was present. Geographic range: The fishery management plan (FMP) for highly migratory species prohibits targeting swordfish with shallow set fishing methods east of W150 longitude. In March 2006, the Pacific Fishery Management Council approved an application for an exempted fishing permit (EFP) that would allow one vessel to utilize shallow set longline methods within the U.S. EEZ, with the same shallow-set regulations used in the Hawaii fishery (circle hooks and fish bait). An environmental assessment of this proposal will be prepared by the Highly Migratory Species Management Team (HMSMT) for review at a future Council meeting. This EFP would be effective no sooner than 2007 if it receives final approval. Seasons: The fishery operates year-round. <u>Gear type:</u> Typically, vessels fish 24-72 km of mainline, rigged with 22 m gangions at approximately 60 m intervals. Anywhere from 800 to 1,300 hooks are deployed in a set, with large squid (Illex sp.) used for bait. Variously colored lightsticks are used, for fishing takes place primarily during the night, when more swordfish are available in surface waters. The mainline is deployed in 4-7 hours and left to drift unattached for 7-10 hours. Retrieval typically takes about 7-10 hours. A description of the gear used for deep sets targeting tuna is given in the Hawaii longline fishery section. <u>Regulations:</u> Longline vessels are prohibited from operating within the 200 nmi limit, but may unload their catch in California ports and are required to have a California state commercial fishing license. <u>Management type:</u> The California longline fishery is managed under a Highly Migratory Species Fishery Management Plan (FMP) developed by the Pacific Fishery Management Council and NMFS. The FMP was partially approved by NMFS on February 4, 2004. NMFS published a final rule on March 11, 2004 which prohibits shallow longline sets of the type normally targeting swordfish on the high seas in the Pacific Ocean east of 150° W. longitude. A mandatory observer program became effective for this fishery in August 2002. <u>Comments:</u> Between October 2001 and February 2004, 23 trips were observed by California-based longline observers, with 469 sets observed (<15% observer coverage). Between October 2001 and November 2003 the longline observer program reported one injured Risso's dolphin and one unidentified dolphin killed. Examination of photographs of the dead dolphin led marine mammal identification experts to conclude that the animal was most likely a striped dolphin. ### Category II, California Anchovy, Mackerel, and Tuna Sardine Purse Seine Fishery. 4 <u>Number of permit holders:</u> There are 63 limited entry permits (Pacific Fishery Management Council. 2005. Status of the Pacific Coast coastal pelagic species fishery and recommended acceptable biological catches. Stock Assessment and Fishery Evaluation Report 2005). Number of active permit holders: There are 61 vessels actively fishing. <u>Total effort</u>: The fishery is managed under a capacity goal, with gross tonnage of vessels used as a proxy for fishing capacity. Capacity for the fleet is approximately 5,400 gross tons. Harvest guidelines for sardine and mackerel are also set annually. <u>Geographic range:</u> These fisheries occur along the
coast of California predominantly from San Pedro, including the Channel Islands, north to San Francisco. - ⁴ Information for this fishery came from the following sources: Pacific Fishery Management Council. 2005. Status of the Pacific Coast coastal pelagic species fishery and recommended acceptable biological catches. Stock assessment and fishery evaluation – 2005; California Coastal Pelagic Species Pilot Observer Program Informational Report 12 October 2005 (NMFS SW Region, unpublished); Lyle Enriquez NMFS Southwest Regional Office (personal communication) and the Marine Mammal Authorization Program, Registration and Reporting System. This fishery was formerly known as the "CA anchovy, mackerel, and tuna purse seine fishery" and was renamed in the NMFS MMPA List of Fisheries for 2007 (Federal Register Volume 72, No. 59, 14466). The "tuna" component of this fishery was designated as a separate fishery in the 2007 List of Fisheries and is named the "CA tuna purse seine fishery" (see fishery description below). ### Revised 5/15/2006 5/29/2008 #### Appendix 1. Description of U.S. Commercial Fisheries Seasons: This fishery operates year round. Targeted species vary seasonally with availability and market demand. Gear type and fishing method: Purse seine, drum seine and lampara nets utilizing standard seining techniques. Regulations: This is a limited entry fishery. <u>Management type</u>: The fishery is managed under a Coastal Pelagic Species Fisheries Management Plan developed by the Pacific Fishery Management Council and NMFS. A NMFS pilot observer program began in July 2004 and has continued through January 2006. A total of 33 93 sets have been observed, with Observed marine mammal interactions with the fishery have included one California sea lion observed killed, five 54 sea lions released alive, and one sea otter released alive. Under the MMAP self-reporting program, the following mortalities have been were reported: In 2003, four California sea lions drowned after chewing through a bait barge net used by the anchovy lampara net fishery. ### Category II, California tuna purse seine fishery. Note: This fishery was previously included in the CA anchovy, mackerel, and sardine purse seine fishery (see above). Vessels in the anchovy, mackerel, and sardine fishery target tuna when oceanographic conditions result in an influx of tuna into southern California waters. Data for this fishery were obtained from the 'Status of the U.S. West Coast Fisheries for Highly Migratory Species through 2004', available at the Pacific Fishery Management Council website (http://www.pcouncil.org). <u>Number of permit holders:</u> There are 63 limited entry permits (Pacific Fishery Management Council. 2005. Status of the Pacific Coast coastal pelagic species fishery and recommended acceptable biological catches. Stock Assessment and Fishery Evaluation Report 2005). Number of active permit holders: Between one and 23 vessels actively purse seined for tunas during the period 2000-2004. <u>Total effort</u>: The number of vessels landing bluefin, yellowfin, skipjack, and albacore between 2000-2004 varied between one and 23. Logbooks are not required for this fishery and the overall number of sets fished is unknown. Geographic range: Observed sets in this fishery have occurred in the southern California Bight. <u>Seasons</u>: Observed sets occurred in August and September. The timing of fishing effort varies with the availability of tuna species in this region. <u>Gear type and fishing method</u>: Small coastal purse seine vessels with a <640 mt carrying capacity target bluefin, yellowfin, albacore and skipjack tuna during warm water periods in southern California. Regulations: This is a limited entry fishery. <u>Management type</u>: This fishery is managed under a Highly Migratory Species Management Plan developed by the Pacific Fishery Management Council and NMFS. <u>Comments</u>: A pilot observer program for this fishery began in July 2004 and ended in January 2006. A total of 9 trips and 15 sets were observed with no marine mammal interactions. ## Category II, California Sardine Purse Seine Fishery³. Note: This fishery was previously listed as part of the 'CA roundhaul fisheries' in Appendix 1 of the 2005 U.S. Pacific Marine Mammal Stock Assessment Reports. The CA roundhaul fishery category has been divided into the CA anchovy, mackerel, and tuna purse (see above) and CA sardine purse seine fishery, respectively. <u>Number of permit holders:</u> There are 63 limited entry permits (Pacific Fishery Management Council. 2005. Status of the Pacific Coast coastal pelagic species fishery and recommended acceptable biological catches. Stocks assessment and fishey evaluation 2005). Number of active permit holders: There are 61 vessels actively fishing. <u>Total effort</u>: The fishery is managed under a capacity goal, with gross tonnage of vessels used as a proxy for fishing capacity. Capacity for the fleet is approximately 5,400 gross tons. Geographic range: These fisheries occur along the coasts of California, Oregon, and Washington. Seasons: This fishery operates year round. Targeted species vary seasonally with availability and market demand. Gear type and fishing method: Purse seine, drum seine and lampara nets utilizing standard seining techniques. Regulations: This is a limited entry fishery. <u>Management type</u>: The fishery is managed under a Coastal Pelagic Species Fisheries Management Plan developed by the Pacific Fishery Management Council and NMFS. <u>Comments</u>: A NMFS pilot observer program began in July 2004 and has continued through January 2006. A total of 74 sets have been observed, with 49 California sea lions and one four harbor seals released alive. The following marine mammal mortalities have been reported in this fishery under the MMAP self-reporting program. In 2004, one sea lion drowned during fishing operations in the sardine drum seine fishery. #### Category II, WA Puget Sound Region salmon drift gillnet fishery. Number of permit holders: This commercial fishery includes all inland waters south of the US-Canada border and east of the Bonilla/Tatoosh line, at the entrance to the Strait of Juan de Fuca. Treaty Indian salmon gillnet fishing is not included in this commercial fishery. In 1999, the U.S. and Canada reached an agreement that significantly reduced the U.S. share of sockeye salmon. In order to compensate the non-treaty U.S. fishermen for the impact of this reduction, a federally funded buyback program was established. By the 2001 fishing season, the number of available drift gillnet permits had been reduced from 675 (1999) to 216. The intent of the buyback program was to reduce the number of drift gillnet permits to 200 (pers. comm., David Cantillon, NMFS, Northwest Region). <u>Number of active permit holders:</u> Under the cooperative program that integrates issuance of Marine Mammal Authorization Certificates into the existing State license process, NMFS receives data on vessels that have completed the licensing process and are eligible to fish. These vessels are a subset of the total permits extant (725 in 2001), and the remainder of the permits are inactive and do not participate in the fishery during a given year. The number of "active" permits is assumed to be equal to or less than the number of permits that are eligible to fish. From 1997-2001, the number of active permits was 633, 559, 199, 248, and 182, respectively. <u>Total effort:</u> Effort in the Puget Sound salmon drift gillnet fishery is regulated by systematic openings and closures that are specific to area and target salmon species. Since 1994, the number of active vessels in the Puget Sound drift gillnet fishery has declined. In addition, at least one major portion of the fishery, the previously observed sockeye fishery in areas 7 and 7A, has experienced reductions in available fishing time (openings). The number of days and total number of hours that the sockeye fishery remained open, approached the 1994 level only once (1997) in the period from 1995 through 1998. In the remaining years the available sockeye fishing time was less than half of the 1994 level. In recent years, poor sockeye returns and market conditions have combined to reduce participation in the fishery beyond the reductions created originally by the federal buyback program. In 2001, drift gillnets fished for only one opening and 182 gear units were fished in all areas as compared to the 559 cited for 1998. Owing to the buyback program and reduced salmon runs, it is expected that the number of active permits will remain low. ### Revised 5/15/2006 5/29/2008 #### Appendix 1. Description of U.S. Commercial Fisheries <u>Geographic Range:</u> The fishery occurs in the inland marine waters south of the U.S./Canada border and east of the Bonilla/Tatoosh line at the entrance to the Strait of Juan de Fuca. The inland waters are divided into smaller statistical catch areas which are regulated independently. <u>Seasons</u>: This fishery has multiple seasons throughout the year that vary among local areas dependent on local salmon runs. The seasons are managed to access harvestable surplus of robust stocks of salmon while minimizing impacts on weak stocks. Gear type and fishing methods: Vessels operating in this fishery use a drift gillnet of single web construction, not exceeding 300 fathoms in length. Minimum mesh size for gillnet gear varies by target species. Fishing directed at sockeye and pink salmon are limited to gillnet gear with a 5 inch minimum mesh and a 6 inch maximum, with an additional "bird mesh" requirement that the first 20 meshes below the corkline be constructed of 5 inch opaque white mesh for visibility; the chinook season has a 7 inch minimum mesh; the coho season has a 5 inch minimum mesh; and the chum season has a 6 to 6.25 inch minimum mesh. The depth of gillnets can vary depending upon the fishery and the area fished. Normally they range from 180 to 220
meshes in depth, with 180 meshes as a common depth. It is the intention of the fisher to keep the net off the bottom. The vessel is attached to one end of the net and drifts with the net. The entire net is periodically retrieved onto the vessel and catch is removed. Drift times vary depending on fishing area, tidal condition and catch. Regulations: The fishery is a limited entry fishery with seasonal openings, area closures, and gear restrictions. Management type: The fishery occurs in State waters and is managed by the Washington Department of Fish and Wildlife consistent with the U.S.-Canada Pacific Salmon Commission management regimes and the ocean salmon management objectives of the Pacific Fishery Management Council. U.S. and Canadian Fraser River sockeye and pink salmon fisheries are managed by the bilateral Fraser Panel in Panel Area waters. This includes the entire U.S. drift gillnet fishery for Fraser sockeye and pink salmon. For U.S. fisheries, Fraser Panel Orders are given effect by federal regulations that consist of Inseason Orders issued by the NMFS Regional Administrator of the NMFS Northwest Region. These regulations are filed in the Federal Register post-season. <u>Comments:</u> In 1993, observers were placed onboard vessels in a pilot program to monitor seabird and marine mammal interactions with fishing effort for several target salmon species in a number of areas throughout the Puget Sound region. In 1994 observer effort was concentrated in the sockeye fishery in areas 7 and 7A, where interactions with seabirds and marine mammals were most likely to occur. Incidental takes of harbor porpoise, Dall's porpoise and harbor seals have been documented in the fishery. The overall take of marine mammals for the salmon drift gillnet fisheries in Puget Sound is unlikely to have increased since the fisheries were last observed, owing to reductions in the number of participating vessels and available fishing time. #### Category II, OR swordfish surface longline fishery. Number of permit holders: The number of permits issued annually from 2000-2005 has ranged between one and seven (pers. comm., Jean McCrae, Oregon Department of Fish and Wildlife, Marine Resources Program). <u>Number of active permit holders:</u> Based on landings of swordfish with this gear type, there were no active permit holders in this fishery from 2000-2005. Total effort: From 2000-2005, there were no reported swordfish landings using longline gear. <u>Geographic range:</u> The Fishery Management Plan prohibits targeting highly migratory species such as swordfish with longlines within the U.S. EEZ, thus any fishing would have to occur outside the EEZ. However, shallow set methods used for swordfish are also prohibited east of W150 longitude. Seasons: This fishery could occur year-round, however, effort would generally terminate by late fall. <u>Gear type:</u> Fishing gear consists of a buoyed mainline fitted with leaders and baited hooks. The mainline is fished near the surface suspended from buoys (rather than anchored to the bottom as in groundfish longline fisheries). Swordfish longlines ### Appendix 1. Description of U.S. Commercial Fisheries may not exceed 1000 fathoms in length and must be attached at one end to the vessel when fishing. The gear is typically set in the evening and retrieved in the morning. Regulations: The fishery is a limited entry fishery with gear and bycatch restrictions. <u>Management type:</u> The fishery is managed under a Highly Migratory Species Fisheries Management Plan developed by the Pacific Fishery Management Council and NMFS. #### Category II, OR blue shark surface longline fishery. <u>Number of permit holders:</u> The number of Oregon Developmental Fishery Permits for fishing blue shark using a floating longline is limited to 10. From 2000-2005, there were fewer than 5 permits issued annually for this fishery (pers. comm., Jean McCrae, Oregon Department of Fish and Wildlife, Marine Resources Program). <u>Number of active permit holders:</u> There were no active permits in the blue shark longline fishery off Oregon from 2000-2005. The effort in this fishery prior to 1998 was estimated to be low based on the number of permits issued and very limited landings. <u>Total effort:</u> From 2000-2005, there were no reported landings of blue shark using longline gear. <u>Geographic range:</u> This fishery occurs off the coast of Oregon. The Fishery Management Plan prohibits targeting highly migratory species such as blue sharks with longlines within the U.S. EEZ, thus any fishing would have to occur outside the EEZ. Seasons: This fishery occurs year-round, however, effort in this fishery generally terminates by late fall. <u>Gear type:</u> Fishing gear consists of a buoyed mainline fitted with leaders and baited hooks. The mainline is fished near the surface suspended from buoys (rather than anchored to the bottom as in groundfish longline fisheries). Shark longlines must be marked at each terminal surface end with a pole and flag, an operating light, a radar reflector, and a buoy showing clear identification and gear owner. The gear is typically set in the evening and retrieved in the morning. Regulations: The fishery is a limited entry fishery with gear and bycatch restrictions. <u>Management type:</u> The fishery is managed under a Highly Migratory Species Fisheries Management Plan developed by the Pacific Fishery Management Council and NMFS. ### Category II, CA squid purse seine fishery.⁵ Number of Permit Holders: A permit has been required to participate in the squid fishery since April 1998. Originally, only two types of permits were issued, either a vessel or light boat permit during the moratorium period from 1998 to 2004. Since the adoption of the Market Squid Fishery Management Plan (MSFMP) in 2005, a total of seven different permit types are now allowed under the restricted access program. Permit types include both transferable and non-transferable vessel, brail and light boat permits whose qualifying criteria are based on historical participation in the fishery during the moratorium period. Market squid vessel and brail permits allow a vessel to use lights to attract and capture squid using either purse seines or brail gear. Light boat owner permits only allow the use of attracting lights to attract and aggregate squid. In addition, three experimental non-transferable permits are allowed for vessel fishing outside of historical fishing areas north of San Francisco. In the 2006/2007 season there were 91 vessel permits, 14 brail permits, 64 light boat permits and 3 experimental permits issued. A permit is not required when fishing for live bait or when landing two short tons or less, which is considered incidental. ⁵This fishery description was provided by Dianna Porzio and Dale Sweetnam, California Department of Fish and Game. Details of marine mammal interactions with this fishery were obtained from NOAA Fisheries, Southwest Regional Office. Number of Active Permit Holders: The number of active permits varies by year depending on market conditions and availability of squid. During the 2006/2007 season (1 April 2006 – 31 March 2007) there were approximately 84 vessels active during some portion of the year. Twenty-nine vessels harvested 86% of the total landings greater than two tons. The 1999/2000 season had the highest squid landings to date (115,437mt), with 132 vessels making squid landings. <u>Total Effort:</u> Logbooks have been mandatory for the squid fishery since May 2000. Results for the 2006 calendar year indicate that each hour of fishing required 1.4 hours of search time by light boats. Combined searching and fishing effort resulted in 6.9 metric tons (mt) of catch per hour. In the 2006/2007 season, the fishery made 1,611 landings. This is a 47% decrease from the previous season. In addition, the average landing decreased from 23.9 mt to 21.7 mt. Geographic Range: Since the 1960's there have been two distinct fisheries in operation north and south of Point Conception. Since the mid-1980's the majority of the squid fishing harvest has occurred in the southern fishery, with efforts focused around the Channel Islands and along the mainland from Port Hueneme to La Jolla. In the 2006/2007 season, the southern fishery landed 98% of the catch with the majority of landings occurring around the northern Channel Islands. In contrast, during the 2005/2006 season, landings in the southern fishery were primarily around Catalina Island. The northern fishery, centered primarily in Monterey Bay, has been in operation since the mid-1860's and has historical significance to California. During the 2002/2003 season, a moderate El Niño condition resulted in nearly 60% of the catch being landed in northern California. <u>Seasons:</u> The fishery can occur year-round; however, fishing efforts differ north and south of Point Conception. Typically, the northern fishery operates from April through September while the southern fishery is most active from October through March. El Niño conditions generally hamper the fishery in the southern fishery and squid landings are minimal during these events. In contrast, landings in the northern fishery often increase during El Niño events, and then are depressed for several years after. Gear Type: There are several gears employed in this fishery. From 1996 to 2006, the vast majority (95%) of vessels use either purse (69%) or drum (26%) seine nets. Other types of nets used include brail (5%) and lampara nets (<1%). Another gear type associated with the fishery is attracting lights (30,000 watts maximum) that are used to attract and aggregate spawning squid in shallow waters. Regulations: Since March 2005, the fishery operates under a restricted access program that requires all vessels to be permitted. A mandatory logbook program for fishing and lighting vessels has been in place since May 2000. A /monitoring program has been in place since 2000 that samples the
landings is designed to evaluate the impact of the fishery on the resource. Attracting lights were regulated with each vessel restricted to no more than 30,000 watts of light during fishing activities. These lights must also be shielded and oriented directly downward to reduce light scatter. The lighting restrictions were enacted to avoid risks to nesting brown pelicans and interactions with other seabird species of concern. A seabird closure area restricting the use of attracting lights for commercial purposes in any waters of the Gulf of the Farallones National Marine Sanctuary was enacted. A seasonal catch limitation of 107,047 mt (118,000 short tons) was established to limit further expansion of the fishery. Commercial squid fishing is prohibited between noon on Friday and noon on Sunday of each week to allow an uninterrupted consecutive two-day period of spawning. Additional closure areas to the fishery to protect squid spawning habitat include the Channel Islands Marine Protected Areas (MPAs) and the newly established MPAs along the central California coast as well areas closed to the use of purse seine gear including the leeward side of Catalina Island, Carmel and Santa Monica Bays. Management Type: The market squid fishery is under California State management. The fishery was largely unregulated until 1998 when it came under regulatory control of the California Fish and Game Commission and the Department of Fish and Game. The MSFMP was enacted on March 28, 2005. The MSFMP was developed to ensure sustainable long-term conservation and to be responsive to environmental and socioeconomic changes. Market squid is also considered a monitored species under the Pacific Fishery Management Council's (PFMC) Coastal Pelagic Species Fishery Management Plan. <u>Comments:</u> During the 1980's, California's squid fishery grew rapidly in fleet size and landings when international demand for squid increased due to declining fisheries in other parts of the world. In 1997 industry sponsored legislation halted the growth of fleet size with a moratorium on new permits. Landing records were set several times during the 1990's, but landings seem to fluctuate with changing environmental and atmospheric conditions of the California current. Encounters with marine mammals and sea birds are documented in logbooks. Seal bombs are used regularly, but fishermen report that they no longer have an effect. A pilot observer program began in July 2004 and has documented one unidentified common dolphin mortality in 135 sets through January 2006. In addition, there have been 96 California sea lions and three harbor seals released alive (NMFS, Southwest Region, unpublished data). In addition to these observed mortalities, there were three strandings of Risso's dolphin from 2002-2003 where evidence of gunshot wounds was confirmed, suggesting interaction with this fishery (NMFS Southwest Regional Office, unpublished data). The squid fishery operates primarily at night and targets spawning aggregations of adult squid. Although, in recent years, the amount of daylight fishing has increased, especially in Monterey, in part due to better sonar gear, but also to reduce interactions with California sea lions. The PFMC adopted the egg escapement method to monitor the impact of market squid fishery since no reliable biomass estimate has been developed. It is a proxy for Maximum Sustainable Yield (MSY), setting an egg escapement threshold level at which to evaluate the magnitude of fishing mortality on the spawning potential of the squid stock. The egg escapement method was developed on conventional spawning biomass "per-recruit" theory. In general, the MSY Control Rule for market squid is based on evaluating levels of egg escapement associated with the exploited population. The egg escapement threshold, initially set at 30%, represents a biological reference point from which to evaluate fishery related impacts. Number of permit holders: A permit to participate in the squid fishery has been required since April 1998. There are two types of permits. Market squid vessel permits allow a light vessel to attract squid with lights and catch squid. Light boat owner permits only allow the use of attracting lights to aggregate market squid. In the 2002/2003 season there were 184 market squid vessel permits and 40 light boat owner permits issued. Landings of two tons or less are considered incidental and no permit is required. Number of active permit holders: The number of active permits varies by year depending on market conditions and squid availability. During the 2002/2003 season, there were approximately 105 vessels active during some portion of the year. Thirty-four vessels harvested 90% of the total landings greater than two tons. The 1999/2000 season had the highest squid landings to date, with 132 vessels making squid landings greater than two tons. <u>Total effort:</u> Beginning in May 2000, logbooks were required for the squid fishery. Results for the 2001 calendar year indicate that each hour of fishing required 5.5 hours of search time by light boats. Combined searching and fishing effort resulted in 3.7 mt of catch per hour. In the 2002/2003 season, the fishery made 2,244 landings. This is a 34.0% decrease from the previous season. In addition, the average landing decreased from 28.2 mt to 19.0 mt. Geographic range: Since the mid 1980s, the majority of the squid fishing harvest has occurred south of Point Conception. However, during the 2002/2003 season, a moderate El Nino condition resulted in nearly 60% of the catch landed in northern California. The northern fishery harvest ranged from Morro Bay to Fort Bragg, although the majority of fishing occurred within a half mile of the Monterey Bay shoreline. The Monterey Bay fishery has been in operation since the mid 1800s and has historical significance for California. Squid eatch south of Point Conception accounted for only 41% of the 2002/2003 landings and declined 54% from 84,024 mt in the previous season to 17,387 mt. <u>Seasons:</u> This fishery occurs year-round, however, effort in this fishery differs north and south of Point Conception. Typically, the fishery north of Point Conception operates from April through September while the southern fishery is most active from October through March. El Niño conditions hamper the fishery and squid landings are minimal during these events, while landings in the northern fishery often increase. The La Niña event in 1999 resulted in the southern fishery landing squid year round. Gear type: There are several gears employed in this fishery. From 1997-2001, the vast majority (98%) of vessels uses either purse (77%) or drum (21%) seine nets. Other types of nets used include lampara, dip and brail nets which are used by a few vessels in southern California. Another gear type associated with the market squid fishery is attracting lights that are used to aggregate spawning squid. In 2000, attracting lights were regulated and each vessel is now restricted to no more than 30,000 watts of lights during fishing activities. Further, to reduce light scatter, lights must be shielded and oriented directly downward. The lighting restrictions were enacted to avoid risks to nesting brown pelicans and interactions with other seabird species of concern. Regulations: All vessels participating in the squid fishery must have a permit. Commercial squid fishing is prohibited between noon on Friday and noon on Sunday of each week to allow a two-day consecutive uninterrupted period of spawning. A mandatory logbook program for fishing and lighting vessels has been in place since May 2000. In May 2001, a seasonal harvest guideline of 125,000 short tons for market squid was established to limit further expansion of the fishery. Management type: This fishery was largely unregulated until 1998 when it came under more strict regulatory control by the Department of Fish and Game. The fishery is considered a monitored fishery in the Pacific Fishery Management Council's Coastal Pelagic Species Fishery Management Plan. A state fishery management plan is to be adopted by the Fish and Game Commission by December 2004. The plan considers seasonal and daily catch limitations; weekend closures, research and monitoring programs, harvest replenishment areas, live bait and incidental market squid catch, restricted access programs including transferability, gear restrictions, area and time closures to address seabird issues, and permit fees. Comments: The squid fishery operates primarily at night and targets spawning aggregations with the use of lights. Encounters between the fishery and pilot whales, pinnipeds, dolphins, and birds have been documented. Seal bombs are used regularly. A pilot observer program began in July 2004 and has documented one unidentified common dolphin mortality in 135 sets through January 2006. In addition, there have been 96 California sea lions and three harbor seals released alive (NMFS, Southwest Region, unpublished data). In addition to these observed mortalities, there were three strandings of Risso's dolphin from 2002 2003 where evidence of gunshot wounds was confirmed, suggesting interaction with this fishery (NMFS Southwest Regional Office, unpublished data). Lethal and nonlethal interaction rates are unknown. During the 1980s, California's squid fishery grew rapidly in fleet size and landings when international demand for squid increased due to declining squid fisheries in other parts of the world. In 1997, the rapid growth of fleet size was halted by a moratorium on new permits. Landing records were set several times during the 1990s, but have been curtailed with the establishment of the 125,000 short ton seasonal harvest guideline. #### Category III, CA Dungeness crab pot Notes: NMFS is reviewing several pot and trap fisheries along the U.S. west coast, in response to entanglements of humpback whales in pot and trap gear. An update on these fisheries will
appear in the MMPA Proposed List of Fisheries for 2009. For all commercial pot and trap fisheries in California, a general trap permit is required, in addition to any specific permits required for an individual fishery. All traps are required to be tended and serviced at least every 96 hours, weather permitting. Descriptions of those pot and/or trap fisheries for which interactions with marine mammals have been documented or suspected are included in this Appendix. <u>Number of permit holders:</u> The Dungeness crab fishery is a limited access fishery requiring a vessel-based permit that is transferable. This program was initiated in 1994 based on landing histories. The number of vessels participating on an annual basis does vary, but approximately 400 vessels have been landing crab in recent years. Number of active permit holders: Approximately 400 vessels have been landing crab in recent years. <u>Total effort:</u> There is no restriction on the number of traps that may be fished at one time by a single vessel. Some vessels use as many as 1000 or more traps at the peak of the season (December/January). Geographic range: This fishery operates in central and northern California. <u>Seasons:</u> The fishery is divided into two management areas. The central region (south of the Mendocino-Sonoma county line) fishery opens November 15 and continues through June 30. The northern region (north of the Mendocino-Sonoma county line) is annually scheduled to open on December 1, but may be delayed by CDF&G based on the condition of market size crabs, and continues until July 15. <u>Gear type:</u> For each trap fished there is one vertical line in the water, though only in the northern region, is fishing strings illegal. All traps are required to be marked with buoys bearing the commercial fishing license number. The normal operating depth for Dungeness crab is between 35 and 70 m. Traps are typically tended on a daily basis. #### Appendix 1. Description of U.S. Commercial Fisheries <u>Regulations:</u> There is no daily logbook requirement for the commercial Dungeness crab fishery. There is a recreation fishery for Dungeness crab, which allows for 10 crab per day to be harvested except when fishing on a commercial passenger fishing vessel (CPFV) in central California, the limit is 6 crab per person. There is no reliable estimate for the effort or landings in the sport fishery except that CPFVs are required to track catch and effort by species. <u>Management type:</u> The Dungeness crab pot fishery is managed by the California legislature, CDF&G and also by the tristate committee for Dungeness, which includes the states of Oregon and Washington. <u>Comments:</u> Humpback whale entanglements with Dungeness crab gear have not been confirmed, but are suspected as the responsible fishery based on the location and timing of fishing effort and observed humpback entanglements. ### Category III, OR Dungeness crab pot <u>Notes:</u> Dungeness crab is the most significant pot/trap fishery in the state of Oregon. Over the long term, the fishery has averaged around 10 million lb of landings per year; although since 2003, annual landings have been approximately 25 to 30 million lb. This fishery requires an Oregon issued limited entry permit, which is transferable. Number of permit holders: There were 433 permit holders in 2006. Number of active permit holders: A total of 364 vessels landed more than \$500 worth of crab in 2006. <u>Total effort:</u> In 2006, the fishery made a transition to a three-tiered pot limitation program which allows a maximum of 200, 300, or 500 pots to be fished at any one time depending on previous landing history. The pot limitation is implemented through a buoy tag requirement. All Dungeness crab pots require buoy tags with the identifying associated permit attached. The expected result of the buoy tags and tier limits is to reduce the number of pots in Oregon waters down from 200,000 to approximately 150,000. Geographic range: Oregon waters. <u>Seasons:</u> The Dungeness crab season runs from December 1 to August 14. The highest landings are always recorded in December through February, at the beginning of the season. Gear type: Pots. <u>Regulations:</u> All Oregon pot/trap gear must be marked on its terminal ends with pole and flag, light, radar reflector, and buoy with the owner/operator number clearly marked. By law, gear may not be left unattended for more than seven days. All vessel operators and deck hands must have a commercial fishing license or crewmembers license. Management type: State management, Oregon Department of Fish and Wildlife. <u>Comments:</u> Humpback whale entanglements with Dungeness crab gear have not been confirmed, but are suspected as the responsible fishery based on the location and timing of fishing effort and observed humpback entanglements. #### Category III, CA spot prawn fishery Number of permit holders: A three-tiered limited access permit system is used in this fishery to accommodate changes in the fishery that occurred when trawling methods were banned and replaced with trap fishing in 2003. Permits are linked to the vessel owner and only Tier 1 permits are transferable. Tier 1 permits allow a maximum of 500 traps in use at a time. Eighteen vessels had Tier 1 permits in 2007. Tier 2 permits allow 150 traps in use at a time. There were three vessels utilizing Tier 2 permits in 2007. Tier 3 permits were issued to allow vessels that previously used trawl gear to switch to trap gear to target spot prawn. There were nine Tier 3 permits issued in 2007. Information on 2007 license statistics was obtained from the CA Department of Fish and Game website, http://www.dfg.ca.gov/licensing/statistics/statistics.html. Number of active permit holders: A total of 30 vessels participated in this fishery in 2007. <u>Total effort:</u> Landings have increased every year since 2003. The total number of traps set is unknown, although the theoretical maximum number of traps that may be fished annually is approximately 13,000. <u>Geographic range:</u> The fishery operates from Monterey south. Over half of the landings are made in Los Angeles and San Diego. Traps are typically set in waters of 182 m (100 fathoms) or more. South of Point Arguello, traps must be fished in waters 91 m (50 fathoms) or deeper. <u>Seasons:</u> North of Point Arguello, the fishery is open from February 1 to October 30. North of Point Arguello, the open season is August 1 to April 30. Gear type: Strings of 25 to 50 traps are fished in deep waters (>182 m). Regulations: For all commercial pot and trap fisheries in California, a general trap permit is required, in addition to any specific permits required for an individual fishery. All traps are required to be tended and serviced at least every 96 hours, weather permitting. There is a daily logbook requirement in this fishery. There is no buoy marking requirement and no recreational fishery for this species. Management type: This fishery is managed under state authority by the California Department of Fish and Game. Comments: One humpback whale was seriously injured in 2006 as a result of entanglement in spot prawn trap gear. #### Category III, WA/OR/CA sablefish pot Notes: Sablefish is likely the most commonly targeted groundfish caught in pot gear in off the U.S. west coast. Number of permit holders: There are 32 limited entry permits (LEPs) to catch sablefish with pot gear. Open access privileges are also available to fishermen. <u>Number of active permit holders:</u> Including all vessels which made landings with an LEP or under open access rules, a total of about 150 vessels participated in this fishery in 2007. This total fluctuates on an annual basis. Total effort: Estimated annual landings indicate usually over 1 million lbs of sablefish are landed per year in this fishery. <u>Geographic range:</u> The fishery is well distributed from central California north to the U.S./Canadian border. Most of the effort occurs out in deeper waters (200-400 m). Seasons: Most fishing effort occurs January through September. Gear type: Traps <6 ft. in any dimension. <u>Regulations:</u> A general trap permit is all that is required for open access to this fishery by the states along the U.S. west coast. LEPs are divided into a three-tiered system which allocates annual landing limits to individual permits based on the status of the stock. Daily logbook reporting is required. <u>Management type:</u> Sablefish is managed under the federal Groundfish Fishery Management Plan. This is the only trap fishery regulated by the federal government; all others are managed by the states. Comments: One humpback whale was seriously injured in 2006 as a result of entanglement in sablefish trap gear. ### Category III, CA rock crab Number of permit holders: There were 134 permits issued in 2007. Number of active permit holders: Unknown, but it is likely that most issued permits are active. Total effort: Annual landings averaged approximately 1 million pounds from 2000 to 2005. Geographic range: The fishery operates throughout California waters. Most landings are made south of Morro Bay, California, with approximately 65% of all landings coming from the Santa Barbara area. Seasons: There are no seasonal restrictions, though some area closures exist. <u>Gear type:</u> There is no restriction on the number of traps that may be fished at one time by the vessel but the typical number of traps operated at any given time is less than 200. Traps are usually buoyed singularly or in pairs, but fishing strings (multiple traps attached together between two buoys) is allowed. Buoys are required to be marked with the license number of the operator. The normal working depth of traps in this fishery is 10 to 35 fathoms. Regulations: There is no daily logbook requirement for the commercial rock crab fishery. Management type: The fishery is managed by the California Department of Fish and Game. <u>Comments:</u> The
recreational bag limit is 35 crabs per day, but there is no reliable estimate of the effort or landings in the sport fishery. ### Category III, CA halibut bottom trawl. Notes: This is a newly-listed fishery in the 2007 MMPA NMFS List of Fisheries (Federal Register Volume 72, No. 59, 14466). Information on fishing effort was provided by Stephen Wertz, California Department of Fish and Game. Number of permit holders: There were 60 permits issued in 2006. Number of active permit holders: There were 31 active permit holders in 2006. Total effort: Thirty one vessels made 3,711 tows statewide in 2006, totaling 3,897 tow hours, in 332 days of fishing effort. Geographic range: The fishery operates from Bodega Bay in northern California to San Diego in southern California, from 3 to 200 nautical miles offshore. Trawling is prohibited in state waters (0 to 3 nmi offshore) and within the entire Monterey Bay, except in the designated "California halibut trawl grounds", between Point Arguello and Point Mugu beyond 1 nautical mile from shore. Trawls used in this region must have a minimum mesh size of 7.5 in and trawling is prohibited here between 15 March and 15 June to protect spawning adults. Seasons: Fishing is permitted year-round, except in state waters. State waters are closed between 15 March and 15 June. <u>Gear type:</u> Otter trawls, with a minimum mesh size of 4.5 inches are required in federal waters, while fishing in state waters has a 7.5 inch mesh size requirement. <u>Regulations:</u> Fishing in state waters is limited to the period 14 March – 16 June in the 'California halibut trawl grounds' in southern California between Point Arguello and Point Mugu. All other fishing must occur in federal waters beyond 3 nautical miles from shore. Management type: The fishery is managed by the California Department of Fish and Game. <u>Comments:</u> No marine mammal interactions have been documented for this fishery, but the gear type and fishing methods are similar to the WA/OR/CA groundfish trawl fishery (also category III), which is known to interact with marine mammals. # Category III, CA herring gillnet fishery.⁶ The herring fishery is concentrated in four spawning areas which are managed separately by the California Department of Fish and Game (CDFG); catch quotas are based on population estimates derived from acoustic and spawning-ground surveys. The largest spawning aggregations occur in San Francisco Bay and produces more than 90% of the herring catch. Smaller spawning aggregations are fished in Tomales Bay, Humboldt Bay, and Crescent City Harbor. During the early 1990's, there were 26 round haul permits (either purse seine or lampara nets). Between 1993 and 1998, all purse seine fishers converted their gear to gillnets with stretched mesh size less than 2.5 inches (which are not known to take mammals) as part of CDFG efforts to protect herring resources. The fishery is managed through a limited-entry program. The California Department of Fish and Game website lists a total of 447 herring gillnet permits for 2005 (http://www.dfg.ca.gov/mrd/herring/index.html). Of these, 406 permits exist for San Francisco Bay, 34 in Tomales Bay, 4 in Humboldt Bay, and 3 in Crescent City Harbor. This fishery begins in December (San Francisco Bay) or January (northern California) and ends when the quotas have been reached, but no later than mid-March. ### Category III, WA Willapa Bay salmon drift gillnet fishery. <u>Number of permit holders</u>: The total number of permit holders for this fishery in 1995 and 1996 was 300 but this number has declined in subsequent years. In 1997 there were 264 total permits and 243 in 1998. The NMFS 2001 List of Fisheries lists an estimate of 82 vessels/persons in this fishery. Number of active permit holders: The number of active permit holders is assumed to be equal to or less than the number of permits eligible to fish in a given year. The number of permits renewed and eligible to fish in 1996 was 300 but declined to 224 in 1997 and 196 permits were renewed for 1998. The 1996-98 counts do not include permits held on waivers for those years, but do include permits that were eligible to fish at some point during the year and subsequently entered into a buyback program. The number of permits issued for this fishery has been reduced through a combination of State and federal permit buyback programs. Vessels permitted to fish in the Willapa Bay are also permitted to fish in the lower Columbia River drift gillnet fishery. <u>Total effort:</u> Effort in this fishery is regulated through area and species openings. The fishery was observed in 1992 and 1993 when fishery opening were greater than in recent years. In 1992 and 1993 there were 42 and 19 days of open fishing time during the summer "dip-in" fishery. The "dip-in" fishery was closed in 1994 through 1999. Available openings have also declined in the fall chinook/coho fisheries. In 1992/93 respectively there were 44 and 78 days of available fishing time. There were 43, 45, 22 and 16.5 available open fishing days during 1995 through 1998. <u>Geographic range:</u> This fishery includes all inland marine waters of Willapa Bay. The waters of the Bay are further divided into smaller statistical catch areas. Seasons: Seasonal openings coincide with local salmon run timing and fish abundance. <u>Gear type:</u> Fishing gear used in this fishery is a drift gillnet of single web construction, not exceeding 250 fathoms in length, with a minimum stretched mesh size ranging upward from 5 inches depending on target salmon species. The gear is commonly set during periods of low and high slack tides. It is the intention of the fisher to keep the net off the bottom. The vessel is attached to one end of the net and drifts with the net. The entire net is periodically retrieved onto the vessel and catch is removed. Drift times vary depending on fishing area, tidal condition, and catch. Regulations: This fishery is a limited entry fishery with seasonal openings and gear restrictions. Management type: The salmon drift gillnet fishery is managed by the Washington Department of Fish and Wildlife. <u>Comments:</u> Observers were placed onboard vessels in this fishery to monitor marine mammal interactions in the early 1980s and in 1990-93. Five incidentally taken harbor seals were recovered by observers in the fishery from 1991through 1993 (3 in '92 and 2 in '93). Two incidentally taken northern elephant seals were recovered by observers from the fishery ⁶ Pers. Comm. Becky Ota, State Herring Manager, Senior Biologist. in 1991 but no takes of this species were observed. The summer fishery (July- August) in Willapa Bay has been closed since it was last observed in 1993 and available fishing time declined from 1996 through 1998. #### Category III, WA Grays Harbor salmon drift gillnet fishery. <u>Number of permit holders:</u> This commercial drift gillnet fishery does not include Treaty Indian salmon gillnet fishing. The total number of permit holders for this commercial fishery in 1995 and 1996 was 117 but this number has declined in subsequent years. In 1997 there were 101 total permits and 87 in 1998. Number of active permit holders: The NMFS 2001 List of Fisheries lists a total of 24 vessels/persons operating in this fishery. The number of active permit holders is assumed to be equal to or less than the number of permits eligible to fish in a given year. The number of permits renewed and eligible to fish in 1996 was 117 but declined to 79 in 1997 and 59 permits were renewed for 1998. The 1996-98 counts do not include permits held on waivers for those years but do include permits that were eligible to fish at some point during the year and subsequently entered a buyback program. The number of permits issued for this fishery has been reduced through a combination of State and federal permit buyback programs. Vessels permitted to fish in Grays Harbor are also permitted to fish in the lower Columbia River salmon drift gillnet fishery. <u>Total effort:</u> Effort in this fishery is regulated through area and species openings. The fishery was observed in 1992 and 1993 when fishery openings were greater than in recent years. In 1992 and 1993 there were 42 and 19 days of open fishing time during the summer "dip-in" fishery. The "dip-in" fishery was closed in 1994 through 1999. Available openings have also declined in the fall chinook/coho fisheries. There were 11, 17.5, 9 and 5 available open fishing days during the 1995 through 1998 fall season. <u>Geographic range:</u> Effort in this fishery includes all marine waters of Grays Harbor. The waters are further divided into smaller statistical catch areas. Seasons: This fishery is subject to seasonal openings which coincide with local salmon run timing and fish abundance. <u>Gear type:</u> Fishing gear used in this fishery is a drift gillnet of single web construction, not exceeding 250 fathoms in length, with a minimum stretched mesh size ranging of 5 inches depending on target salmon species. The gear is commonly set during periods of low and high slack tides and retrieved periodically by the tending vessel. It is the intention of the fisher to keep the net off the bottom. The vessel is attached to one end of the net and drifts with the net. The entire net is periodically retrieved onto the vessel and catch is removed. Drift times vary depending on fishing area, tidal condition, and catch. Regulations: The fishery is a limited entry fishery with seasonal openings and gear restrictions. Management type: The salmon drift gillnet fishery is managed by the Washington Department of Fish and Wildlife. <u>Comments:</u> Observers were placed onboard vessels in this fishery to monitor marine mammal interactions in the early 1980s and in 1990-93. Incidental take of harbor seals was observed during the fishery in 1992 and 1993. In 1992, one harbor seal was observed entangled dead during the summer fishery and one additional seal was
observed entangled during the fall fishery but it escaped uninjured. In 1993, one harbor seal was observed entangled dead and one additional seal was recovered by observers during the summer fishery. The summer fishery (July-August) in Grays Harbor has been closed since it was last observed in 1993. Available fishing time in the fall chinook fisheries declined from 1996 through 1998. #### Category III, WA, OR lower Columbia River salmon drift gillnet fishery. <u>Number of permit holders</u>: The total number of permit holders was 856 (344 from Oregon and 512 from Washington) when the fishery was last observed in 1993. In 1995 through 1998 the number of permits was 747, 693, 675 and 620 respectively. The number of permits issued for this fishery by Washington has been reduced through a combination of State and federal buy-back programs. This reduction is reflected in the overall decline in the total number of permits. # Appendix 1. Description of U.S. Commercial Fisheries <u>Number of active permit holders:</u> The number of active permits is a subset of the total permits issued for the fishery. For example, in 1995, 110 vessels (of the 747 vessels holding permits) landed fish in the mainstem fishery. <u>Total effort:</u> Effort in this fishery is regulated through species related seasonal openings and gear restrictions. The fishery was observed in 1991, 1992 and 1993 during several seasons of the year. The winter seasons (openings) for 1991 through 1993 totaled 13, 9.5, and 6 days respectively. The winter season has subsequently been reduced to remnant levels to protect upriver ESA listed salmon stocks. In 1995 there was no winter salmon season, in 1996 the fishery was open for 1 day. In 1997 and 1998 the season was shifted to earlier in the year and gear restrictions were imposed to target primarily sturgeon. The fall fishery in the mainstem was also observed 1992 and 1993 as was the Young's Bay terminal fishery in 1993, however, no marine mammal mortalities were observed during these fisheries. The fall mainstem fishery openings varied from 1 day in 1995 to just under 19.5 days in 1997 and 6 days in 1998. The fall Youngs Bay terminal fishery fluctuated between 60 and 70 days for the 1995 through 1998 period which was similar to the fishery during the period observed. <u>Geographic range:</u> This fishery occurs in the main stem of the Columbia river from the mouth at the Pacific Ocean upstream to river mile 140 near the Bonneville Dam. The lower Columbia is further subdivided into smaller statistical catch areas which can be regulated independently. <u>Seasons:</u> This fishery is subject to season and statistical area openings which are designed to coincide with run timing of harvestable salmon runs while protecting weak salmon stocks and those listed under the Endangered Species Act. In recent years, early spring (winter) fisheries have been sharply curtailed for the protection of listed salmon species. In 1994, for example, the spring fishery was open for only three days with approximately 1900 fish landed. In 1995 the spring fishery was closed and in 1996 the fishery was open for one day but fishing effort was minimal owing to severe flooding. Only 100 fish were landed during the one day in 1996. <u>Gear type:</u> Typical gear used in this fishery is a gillnet of single web construction, not exceeding 250 fathoms in length, with a minimum stretched mesh size ranging upwards from 5 inches depending on target salmon species. The gear is commonly set during periods of low and high slack tides. It is the intention of the fisher to keep the net off the bottom. The vessel is attached to one end of the net and drifts with the net. The entire net is periodically retrieved onto the vessel and catch is removed. Drift times vary depending on fishing area, tidal condition, and catch. Regulations: The fishery is a limited entry fishery with seasonal openings, area closures, and gear restrictions. <u>Management type:</u> The lower Columbia River salmon drift gillnet fishery is managed jointly by the Washington Department of Fish and Wildlife and the Oregon Department of Fish and Wildlife. <u>Comments:</u> Observers were placed onboard vessels in this fishery to monitor marine mammal interactions in the early 1980s and in 1990-93. Incidental takes of harbor seal and California sea lion were documented, but only during the winter seasons (which have been reduced dramatically in recent years to protect ESA listed salmon). No mortalities were observed during the fall fisheries. #### Category III, WA, OR salmon net pens. <u>Number of permit holders:</u> There were 12 commercial salmon net pen ("grow out") facilities licensed in Washington in 1998. There are no commercial salmon net pen or aquaculture facilities currently licensed in Oregon. Non-commercial salmon enhancement pens are not included in the list of commercial fisheries. Number of active permit holders: Twelve salmon net pen facilities in Washington. <u>Total effort:</u> The 12 licensed facilities on Washington operate year-round. <u>Geographic range:</u> In Washington, net pens are found in protected waters in the Straits (Port Angeles), northern Puget Sound (in the San Juan Island area) as well as in Puget Sound south of Admirality Inlet. There are currently no commercial salmon pens in Oregon. ### Revised 5/15/2006 5/29/2008 # Appendix 1. Description of U.S. Commercial Fisheries Seasons: Salmon net pens operate year-round. <u>Gear type:</u> Net pens are large net impoundments suspended below a floating dock-like structure. The floating docks are anchored to the bottom and may also support guard (predator) net systems. Multiple pens are commonly rafted together and the entire facility is positioned in an area with adequate tidal flow to maintain water quality. Regulations: Specific regulations unknown. <u>Management type:</u> In Washington, the salmon net pen fishery is managed by the Washington Department of Natural Resources through Aquatic Lands Permits as well as the Washington Department of Fish and Wildlife. <u>Comments:</u> Salmon net pen operations have not been monitored by NMFS for marine mammal interactions, however, incidental takes of California sea lions and harbor seals have been reported. ### Category III, WA, OR, CA groundfish trawl. <u>Approximate number of vessels/persons</u>: In 1998, approximately 332 vessels used bottom and mid-water trawl gear to harvest Pacific coast groundfish. This is down from 383 vessels in 1995. The NMFS List of Fisheries for 2001 lists 585 vessels as participating in this fishery. Groundfish trawl vessels harvest a variety of species including Pacific hake, flatfish, sablefish, lingcod, and rockfish. This commercial fishery does not include Treaty Indian fishing for groundfish. All observed incidental marine mammal takes have occurred in the mid-water trawl fishery for Pacific hake. The annual hake allocation is divided between vessels that harvest and process catch at sea and those that harvest and deliver catch to shore-based processing facilities. At least one NMFS-trained observer is placed on board each at-sea processing vessel to provide comprehensive data on total catch, including marine mammal takes. In the California, Oregon, and Washington range of the fishery, the number of vessels fishing ranged between 12 and 16 (all with observers) during 1997-2001. Hake vessels that deliver to shore-based processors are issued Exempted Fishing Permits that requires the entire catch to be delivered unsorted to processing facilities where State technicians have the opportunity to sample. In 1998, 13% of the hake deliveries landed at shore-based processors were monitored. The following is a description of the commercial hake fishery. Number of permit holders/active permit holders: A license limitation ("limited entry") program has been in effect in the Pacific coast groundfish fishery since 1994. The number of limited entry permits is limited to 404. Non-tribal trawl vessels that harvest groundfish are required to possess a limited entry permit to operate in the fishery. Any vessel with a federal limited entry trawl permit may fish for hake, but the number of vessels that do is smaller than the number of permits. In 1998, approximately 61 limited entry vessels, 7 catcher/processors and 50 catcher vessels delivering to shoreside and mothership processors, made commercial landings of hake during the regular season. In addition, 6 unpermitted mothership processors received unsorted hake catch. <u>Total effort:</u> The hake allocation continues to be fully utilized. From 1997 to 1999 the annual allocation was 232,000 mt/year, this is an increase over the 1996 allocation of 212,000 mt and the 1995 allocation of 178,400 mt. In 1998, motherships vessels received 50,087 mt of hake in 17 days, catcher/processors took 70,365 mt of hake in 54 days and shore-based processors received 87,862 mt of hake over a 196 day period. <u>Geographic range:</u> The fishery extends from northern California (about 40° 30' N. latitude) to the U.S.-Canada border. Pacific hake migrate from south to north during the fishing season, so effort in the south usually occurs earlier than in the north. <u>Seasons:</u> From 1997 to 1999, season start dates have remained unchanged. The shore-based season in most of the Eureka area (between 42°- 40°30' N latitude) began on April 1, the fishery south of 40°30' N latitude opened April 15, and the fishery north of 42° N latitude started on June 15. In 1998, the primary season for the shore-based fleet closed on October 13, 1998. The primary seasons for the mothership and catcher/processor sectors began May 15, north of 42° N. lat. In 1998, the mothership fishery closed on May 31, the catcher/processor fishery closed on August 7. #### Appendix 1. Description of U.S. Commercial Fisheries <u>Gear type:</u> The Pacific hake trawl fishery is conducted with mid-water trawl gear with a minimum mesh size of 3 inches
throughout the net. <u>Regulations/Management type:</u> This fishery is managed through federal regulations by the Pacific Fishery Management Council under the Groundfish Fishery Management Plan. <u>Comments:</u> Since 1991, incidental takes of Steller sea lions, Pacific white-sided dolphin, Dall's porpoise, California sea lion, harbor seal, northern fur seal, and northern elephant seal have been documented in the hake fishery. From 1997-2001, 4 California sea lions, 2 harbor seals, 2 northern elephant seals, 1 Pacific white-sided dolphin, and 6 Dall's porpoise were reported taken in California/Oregon/Washington regions by this fishery. ### Category III, Hawaii gillnet fishery.⁷ <u>Number of active permit holders:</u> In 1997 there were 129 active commercial fishers. In 1995 there were approximately 115. <u>Total effort:</u> In 1997 there were 2,109 trips for a total catch of 864,194 pounds with 792,210 pounds sold. This fishery operates in nearshore and coastal pelagic regions. <u>Seasons:</u> This fishery operates year-round with the exception of Juvenile big-eyed scad less than 8.5 inches which cannot be taken from July through October. Gear type: Gillnets of stretched mesh greater than 2 inches and stretched mesh size greater than 2.75 inches for stationary gillnets. Stationary nets must be inspected every 2 hours and total soak time cannot exceed four hours in the same location. New restrictions implemented in 2002 include that nets may not: 1) be used more than once in a 24-hour period; 2) exceed a 12 ft stretched height limit; 3) exceed a single-panel; 4) be used at night; 5) be set within 100 ft. of another lay net; 6) be set in more than 80 ft depths; 7) be left unattended for more than ½ hour; 8) break coral during retrieval and nets must be 1) registered with the Division of Aquatic Resources; 2) inspected within two hours after being set; 2) tagged with two marker buoys while fished. In addition to these gear restrictions, non-commercial users of lay nets may not use a net longer than 500 ft, while commercial users may use nets up to 1200 ft in length. Additional mesh restrictions are in place for taking the big-eyed scad. Regulations: Gear and season restrictions (see above). Management type: Managed by the State of Hawaii Division of Aquatic Resources. <u>Comments</u>: The principle catches include reef fishes and big-eyed scad (akule) and mackerel scad (opelu). Interactions have been documented with bottlenose dolphin and spinner dolphin. ### Category III. Hawaii lobster trap fishery. 8 9 Note: The portion of this fishery managed by the State of Hawaii and operating in the MHI is about 1% of the size (total pounds of lobster caught) of the federally managed fishery operating primarily in the NWHI. The description that follows refers to the NWHI fishery unless stated otherwise. Number of permit holders: There are 15 permit holders under a (1991) federal limited access program. ⁷Descriptions of Hawaii State managed fisheries provided by William Devick, State of Hawaii, Department of Land and Natural Resources, Division of Aquatic Resources, Honolulu Hawaii. ⁸Kawamoto, K. and Samuel G. Pooley. 1999. Draft Annual report of the 1998 western pacific lobster fishery. ⁹Kawamoto, K. 1999. Summary of the 1999 NWHI Lobster Fishing Season. NMFS Honolulu Laboratory. #### Appendix 1. Description of U.S. Commercial Fisheries <u>Number of active permit holders:</u> In 1998 and 1999 there were 5 and 6 vessels that participated respectively. In the MHI there were 5 active fishers in 1997. <u>Total effort:</u> The number of trap hauls for 1999 is not available at this time. However, the majority of the effort took place in the 4 harvest guideline areas; Necker Bank, Gardner Pinnacles and Maro Reef, with the remaining effort spread out over 10 unique areas. In 1998 171,000 trap hauls were made by the 5 vessels during 9 trips and in 1997 a total of 177,700 hauls were made. In the MHI 19 trips were made in 1997. <u>Geographic range:</u> Lobster permits allow fishing operations in the US EEZ from 3 to 200 nmi offshore American Samoa, Guam and Hawaii (including the EEZ areas of the NWHI and MHI). However, no vessels have operated in the EEZ's of American Samoa or Guam since 1983. <u>Seasons:</u> This fishery operates under a seasonal harvest guideline system opening on July 1. The season ends once the harvest guideline is met, but no later than December 31. In 1998, the harvest guideline was divided into the 4 areas mentioned above with total lobster catch set at (in thousands) 70, 20, 80, and 116, respectively. Area closure occurs once an area's harvest guideline is met. In the MHI, open season is from September through April. <u>Gear type:</u> One string consists of approximately 100 Fathom-plus plastic lobster traps. About 10 such strings are pulled and set each day. Since 1987 escape vents that allow small lobsters to escape from the trap have been mandatory. In 1996, the fishery became "retain all", i.e. there are no size limits or prohibitions on the retention of berried female lobsters. The entry-way of the lobster trap must be less than 6.5 inches to prevent monk seals from getting their heads stuck in the trap. In the MHI, rigid trap materials must have a dimension greater than 1 inch by 2 inches, with the trap not exceeding 10 feet by six feet. <u>Regulations:</u> Season, gear and quota restrictions (see above) for the NWHI were formulated by the Western Pacific Regional Fishery Management Council and implemented by NMFS. The MHI fishery is managed by the State of Hawaii, Division of Aquatic Resources with season and gear restrictions (see above). Management type: Limited access program with bank specific quotas and closures. In the MHI, open access. <u>Comments</u>: The NWHI fishery targets the red spiny lobster and the common slipper lobster. The ridgeback slipper lobster is also taken. Protected species of concern include monk seals (mentioned above) and turtles. There have been no interactions with these species since 1995 but they have been seen in the vicinity of the fishing gear. ### Category III, Hawaii inshore handline fishery. In 1997 a total 750 fishers made 8,526 fishing trips in the main Hawaiian Islands and caught 531,449 pounds and sold 475,562 pounds for an ex-vessel landing value of \$1,010,758. This fishery occurs in nearshore and coastal pelagic regions. The principal catches include reef fishes and big-eyed scad (akule) and mackerel scad (opelu). In 1995 approximately 650 fishers were active. Interactions have been documented for bottlenose dolphin. ### Category III, Hawaii deep sea bottomfish handline and jig fishery. Note: There are two commercial bottomfish fisheries in Hawaii: a distant water Northwestern Hawaiian Islands (NWHI) limited entry fishery under federal jurisdiction and the main Hawaiian Islands bottomfish fishery primarily under the State of Hawaii jurisdiction. <u>Number of permit holders</u>: The main Hawaiian Islands fishery is open access with close to 2,000 bottomfish vessels registered with the State of Hawaii, whereas the NWHI is restricted to a maximum of 17 vessels. <u>Number of active permit holders:</u> In 1997 in the MHI a total of 750 fishers were active. The NWHI are divided into the Mau Zone (closer to MHI) and the Hoomalu Zone. The Hoomalu Zone is a limited entry zone with 6 vessels participating in 1998, 7 vessels fished the Mau Zone in the same year. Restrictions on new entry into the Mau Zone were implemented in 1998. <u>Total effort:</u> In 1998 in the MHI approximately 8,500 trips were made with a total catch of 424,000 pounds for an exvessel landing value of \$1,336,000. This fishery occurs primarily in offshore banks and pinnacles. In the NWHI 332,000 pounds (\$894,000) were caught in 1998, below average since 1990. Seasons: Year round. <u>Gear type:</u> This fishery is a hook-and-line fishery that takes place in deep water. In the NWHI fishery, vessels are 30 ft or greater and conduct trips of about 10 days. In the MHI the vessels are smaller than 30 ft and trips last from 1 to 3 days. <u>Regulations</u>: In the MHI, the sale of snappers (opakapaka, onaga and uku) and jacks less than one pound is prohibited. In June of 1998, Hawaii Division of Aquatic Resources (HDAR) closed 19 areas to bottomfishing and regulations pertaining to seven species (onaga, opakapaka, ehu, kalekale, gindai, hapuupuu and lehi) were enacted. <u>Management type:</u> The MHI is managed by the HDAR with catch, gear and area restrictions (see above) but no permit limits. The NWHI is a limited access federal program. Comments: The deep-slope bottomfish fishery in Hawaii concentrates on species of eteline snappers, carangids, and a single species of grouper concentrated at depths of 30-150 fathoms. These fish have been fished on a subsistence basis since ancient times and commercially for at least 90 years. NMFS is considering the possibility of re-categorizing the NWHI bottomfish fishery from Category III to Category II due to concerns for potential interactions between bottomfish fishing vessels and Hawaiian monk seals, although there were none observed during 26 NWHI bottomfish trips during 1990-1993, and none reported. On 12 of the 26 trips, bottlenose dolphins have been observed stealing fish from the lines, but not hookings or entanglements occurred. Effort in this fishery increases significantly around the Christmas season because a target species, a true snapper, is typically sought for cultural festivities. ¹¹ No data is collected for recreational or subsistence fishermen, but their MHI catch is estimated to be about equal to the MHI commercial catch. #### Category III, Hawaii tuna handline and jig fishery. In 1997 a total of 543 fishers made 6,627 trips in the MHI and caught 2,014,656 pounds and sold 1,958,759 pounds for an ex-vessel value of \$3,788,391. This fishery occurs around offshore fish aggregating devices and mid-ocean seamounts and pinnacles. The principal
catches are small to medium sized bigeye, yellowfin and albacore tuna. There are several types of handline methods in the Hawaiian fisheries. Baited lines with chum are used in day fishing operations (palu-ahi), another version uses squid as bait during night operations (ika-shibi), and an operation called "danglers" uses multiple lines with artificial lures suspended or dangled over the water. Interactions have been documented for roughtoothed dolphin, bottlenose dolphin, and Hawaiian monk seal. # Appendix 1. Description of U.S. Commercial Fisheries Table 1. The number of animals injured and/or killed reported to the Marine Mammal Authorization Program (MMAP) compared with data reported from the NMFS Observer Program for the California large mesh drift gillnet swordfish fishery between 2000-2004. The drift gillnet fishery had 20% observer coverage during this period. | | 20 | 2000 | | 01 | 20 | 002 | 20 | 03 | 2004 | | | |------------------------------|------|------------|----------|----------|----------|----------|----------|------|------|------|--| | | MMAP | NMFS | | | Species | | | | | | | | | | | | | Gray whale | - | - | - | - | - | - | - | - | - | - | | | Humpback whale | - | - | - | - | - | - | - | - | - | 1 | | | Short-finned pilot whale | - | - | - | - | - | - | - | 1 | - | - | | | Pacific white-sided dolphin | 11 | 2 | - | 2 | - | 1 | - | - | - | - | | | Bottlenose dolphin | - | - | 1 | | - | - | - | - | - | - | | | Common dolphin spp. | 17 | 25 | 7 | 7 | 4 | 11 | 7 | 17 | 3 | 7 | | | Risso's dolphin | 2 | - | - | - | - | - | - | 4 | - | - | | | Northern right whale dolphin | 4 | - | 1 | 5 | 2 | 2 | 0 | 1 | 1 | 1 | | | Unidentified small cetacean | 2 | - | 4 | - | 2 | - | 2 | - | - | - | | | California sea lion | 13 | 13 | 3 | 2 | 16 | 18 | 4 | 4 | 1 | 7 | | | Steller's sea lion | - | - | - | - | - | - | - | - | 1 | - | | | Northern elephant seal | 2 | 6 | - | 1 | - | 1 | - | 1 | - | - | | | Unidentified seal | 1 | - | - | - | - | - | - | - | - | - | | | Unidentified sea lion | - | - | - | - | 1 | - | - | - | - | - | | | Unidentified baleen whale | | <u>-</u> _ | <u> </u> | <u>-</u> | <u> </u> | <u> </u> | <u> </u> | 1 | | | | | Total Occurrences Reported | 52 | 46 | 16 | 17 | 25 | 33 | 13 | 29 | 6 | 16 | | Table 2. Strandings reported to the NMFS Marine Mammal Stranding Network 2000-2004. hr = human-related strandings. | Species | | 200 | 00 | | | 20 | 01 | | | 20 | 002 | | | 20 | 003 | | | 20 | 004 | | |-------------------------------|------|------|-------|----|------|------|-------|----|------|-----|-------|----|------|-----|-------|----|------|-----|-------|----| | • | CA | hr C | DR/WA | hr | CA | hr (| OR/WA | hr | CA | hr | OR/WA | hr | CA | hr | OR/WA | hr | CA | hr | OR/WA | hr | | Harbor Porpoise | 20 | 2 | 6 | 1 | 12 | 4 | 15 | 1 | 20 | 5 | 0 | 0 | 19 | 0 | 34 | 1 | 39 | 3 | 23 | 0 | | Dall's Porpoise | 3 | 0 | 9 | 1 | 2 | 1 | 6 | 0 | 3 | 0 | 0 | 0 | 4 | 1 | 6 | 0 | 4 | 0 | 14 | 0 | | Pac. White-sided Dolphin | 3 | 0 | 0 | 0 | 6 | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 6 | 1 | 1 | 0 | | Risso's Dolphin | 6 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 4 | 2 | 0 | 0 | 5 | 1 | 0 | 0 | 5 | 0 | 0 | 0 | | Bottlenose Dolphin | 12 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 9 | 1 | 0 | 0 | 13 | 1 | 1 | 0 | | Common Dolphin (unidentified) | 30 | 1 | 0 | 0 | 33 | 3 | 0 | 0 | 41 | 1 | 0 | 0 | 56 | 1 | 0 | 0 | 11 | 0 | 0 | 0 | | Short-beaked common dolphin | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 9 | 1 | 0 | 0 | | Long-beaked common dolphin | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 45 | 3 | 0 | 0 | 62 | 3 | 0 | 0 | 20 | 4 | 0 | 0 | | Striped Dolphin | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | | N. Right Whale Dolphin | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | | Rough-toothed Dolphin | 0 | | Killer Whale | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | Short-finned Pilot Whale | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Baird's Beaked Whale | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | | Steineger's Beaked Whale | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cuvier's Beaked Whale | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Peruvian Beaked Whale | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Unident. Beaked Whale | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | Unidentified Kogia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Pygmy Sperm Whale | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | Dwarf Sperm Whale | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Sperm Whale | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 2 | 1 | 1 | 0 | | Gray Whale | 58 | 8 | 25 | 0 | 5 | 1 | 1 | 0 | 7 | 3 | 1 | 1 | 8 | 3 | 5 | 1 | 18 | 3 | 6 | 2 | | Minke Whale | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | | Blue Whale | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 1 | 0 | Ö | | Fin Whale | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 4 | 4 | 2 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | | Sei Whale | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | | Humpback Whale | 4 | 3 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 5 | 0 | 0 | 4 | 1 | 1 | 0 | | Unidentified Cetacean | 1 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 6 | 0 | 0 | 0 | 2 | 0 | 3 | Ö | | Unidentified Porpoise | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | Ö | | Unidentified Dolphin | 11 | 0 | 2 | 0 | 9 | 0 | 2 | 0 | 29 | 1 | 0 | 0 | 17 | 0 | 2 | 0 | 14 | 0 | 0 | 0 | | Unidentified Whale | 1 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 2 | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 7 | 6 | 0 | 0 | | Unident. Balaenopterid | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | | Northern Fur Seal | 3 | 0 | 6 | 0 | 2 | 0 | 1 | 1 | 11 | 0 | 0 | 0 | 5 | 0 | 3 | 2 | 9 | 0 | 0 | 0 | | Guadalupe Fur Seal | 1 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 7 | 1 | 0 | 0 | | Steller (Nthn) Sea Lion | 10 | 2 | 5 | 0 | 9 | 0 | 4 | 0 | 6 | 0 | 3 | 0 | 9 | 0 | 16 | 0 | 7 | 1 | 20 | 0 | | California Sea Lion | 1268 | 67 | 32 | 5 | 990 | 98 | 27 | 1 | 1951 | 195 | 8 | 0 | 2951 | 184 | 51 | 4 | 1563 | 109 | 125 | 12 | | Unidentified Sea Lion | 1 | 0 | 8 | 0 | 0 | 0 | 17 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 16 | 1 | 0 | 0 | 18 | 0 | | Unidentified Otariid | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Harbor Seal | 230 | 13 | 148 | 8 | 152 | 8 | 170 | 8 | 163 | 18 | 121 | 6 | 211 | 18 | 211 | 7 | 185 | 14 | 325 | 18 | | Northern Elephant Seal | 211 | 3 | 11 | 0 | 216 | 4 | 11 | 0 | 176 | 7 | 0 | 0 | 299 | 5 | 6 | 0 | 270 | 3 | 8 | 0 | | Unidentified Seal | 0 | 0 | 17 | 1 | 0 | 0 | 11 | 1 | 170 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | | Unidentified Pinniped | 133 | 0 | 8 | 0 | 110 | 0 | 9 | Ö | 291 | 0 | 4 | 0 | 136 | 0 | 45 | 2 | 99 | 1 | 49 | 0 | | Totals for Cetaceans | 152 | 14 | 48 | 3 | 101 | 18 | 28 | 2 | 189 | 20 | 10 | 5 | 212 | 16 | 58 | 4 | 165 | 23 | 59 | 2 | | Totals for Pinnipeds | 1857 | 85 | 235 | 14 | 1482 | 111 | 250 | 11 | 2603 | 220 | 136 | 6 | 3617 | 207 | 348 | 16 | 2140 | 129 | 547 | 30 | | . State for a maripode | 1001 | - | _00 | | 1702 | | _00 | | _000 | | 100 | U | 3017 | | 5-0 | | -170 | 0 | 571 | | # Appendix 1. Description of U.S. Commercial Fisheries Table 3. Characteristics of Category I and Category II gillnet fisheries in California. | Fishery | Species | Mesh Size | Water Depth | Set Duration | Deployment | Miscellaneous | |---|--|--------------------|-------------------------------|-----------------------|---------------------|---| | Category I CA/OR thresher shark and swordfish drift gillnet fishery | swordfish/shark | 14 to 22 inches | Ranges from 90 to 4600 meters | Typically 8 to 15 hrs | Drift net only | Nets 500 to 1800
meters in length;
other species
caught: opah,
louver, tuna,
thresher, blue shark,
mako shark | | Category I | Halibut /angel shark | 8.5 inch | < 70 meters | 24 hrs | Set net | | | | Barracuda | 3.5 inch | | < 12 hrs | Drift net | April – July | | CA angel
shark/ halibut and | Leopard Shark | 7.0 to 9.0 inch | < 90 meters | | | Fished similar to halibut. | | white seabass and other species set | Perch/Croaker | 3.5 to 4.0 inch | < 40 meters | < 24 hrs | Set net | Few boats target these species | | gillnet fishery (>3.5 inch mesh) | Rockfish | 4.5 to 7.5 inch | > 90 meters | 12 to 18 hrs | Set net | Net lengths 450 to
1800 meters.
Soupfin shark is
major bycatch. | | | Soupfin shark/white seabass | 6.0 to 8.5 inch | > 50 meters | 24 hrs | Set net | Few boats target this species. | | | Miscellaneous shark | 6.0 to 14 inch | < 70 meters | 8 to 24 hrs | Drift, some set net | Species include thresher and swell sharks. | | Category II CA
Yellowtail,
barracuda, white
seabass, and tuna
drift gillnet fishery | White seabass,
yellowtail,
barracuda, white
seabass, and tuna | Typically 6.5 inch | 15 to 90 meters | 8 to 24 hrs | Mostly drift net | White seabass predominant target species. | **Figure 1.** Locations of 7,660 sets observed in the California/Oregon large-mesh drift gillnet fishery for thresher shark and swordfish, 1990-2006. The cross-hatched area has been closed
to gillnetting from 15 August to 15 November each year since 2001 to protect leatherback turtles. The outer dashed line represents the U.S. Exclusive Economic Zone. Total estimates of fishing effort over this period are approximately 48,000 sets. **Figure 2.** Estimated (gray) and observed (black) days of fishing effort for 1990- $\frac{2005}{2007}$ in the California/Oregon thresher shark/swordfish drift gillnet fishery (≥ 14 inch mesh). One fishing day is equal to one set in this fishery. Percent observer coverage for each year is shown above the bars. **Figure 3.** Estimated (gray) and observed (black) days of fishing effort for 1990-2004 2007 in the California angel shark/halibut/white seabass set gillnet fishery (> 3.5 inch mesh). The fishery was observed only from 1990-94 and again in 1999 and 2000 in Monterey Bay. The fishery has been observed only sporadically since 1994. Percent observer coverage for each year is shown above the bars. The observer coverage estimate for 2007 is based on the number of sets observed in 2007 (n=248 sets) and 2006 fishing effort obtained from logbooks (n = 1,387 sets). Figure 4. Observed set locations in the Hawaii-based deep-set (left) and shallow-set (right) longline fisheries, 2002-2006. This Appendix presents a summary of survey effort from which cetacean sighting locations were plotted in the stock assessment reports. In Figures 1-6, the thick solid line represents the outer boundary of all surveys and the thin dashed line represents the U.S. EEZ. Transect lines completed during a 1991 winter/spring aerial survey of California waters (Forney et al. 1995). Transect lines completed during a 1992 winter/spring aerial survey of California waters (Forney et al. 1995). Transect lines completed Figure 3. during a 1991 summer/autumn vessel survey of California waters (Barlow 1995, Barlow and Forney 2007). Figure 4. Transect lines completed during a 1993 summer/autumn vessel survey of California waters (Mangels and Gerrodette 1994). Figure 5. Transect lines completed during a 1996 summer/autumn vessel survey of California, Oregon, and Washington waters (Barlow 1997; Von Saunder and Barlow 1999, Barlow and Forney 2007). Figure 6a. Transect lines completed during a 2001 summer/autumn vessel survey of California, Oregon, and Washington waters (Appler et al. 2004, Barlow and Forney 2007). **Figure 6b.** Transect lines completed during a 2005 summer/autumn vessel survey of California, Oregon, and Washington waters (Forney 2007, Barlow and Forney 2007). **Figure 7**. Harbor porpoise stock boundaries in California and southern Oregon. Thick solid lines represent survey transects flown during 1989-2007 aerial surveys (Forney et al. 1991; Forney 1995; Carretta and Forney 2004, NMFS, unpubl. data). Survey coverage north of the California/Oregon border has been completed by the National Marine Mammal Laboratory (Laake et al. 1998). **Figure 8.** Coastline section (in bold) surveyed during 1990-2000 coastal bottlenose dolphin aerial surveys in southern and central California (Carretta et al. 1998, NMFS unpublished data). **Figure 9**. Transect lines completed during a 2002 summer/autumn vessel survey of Hawaiian waters (Barlow et al. 2004). Thick outer survey boundary line represents the U.S. EEZ and the inner thick line represents a separate 'Main Hawaiian Islands' stratum. Thin lines represent completed transect lines. **Figure 10.** Small research vessel survey lines completed around the Main Hawaiian Islands between 2000-2004 (Baird et al. 2005). Approximately 25,000 km of survey tracks are shown. **Figure 11.** Aerial survey effort conducted around the Main Hawaiian Islands from 1993-2003 (Mobley et al. 2000, Mobley 2001, 2002, 2003, 2004). Documentation of cetacean abundance estimates used in the 2008 draft Pacific Marine Mammal Stock Assessments. Cetacean abundance estimates reported in the Pacific Marine Mammal Stock Assessments originate from several sources: vessel line-transect surveys of U.S. west coast and Pacific Island Exclusive Economic Zone (EEZ) waters (Barlow 2006, Barlow and Rankin 2007, Barlow and Forney 2007, Forney 2007); aerial line-transect surveys of harbor porpoises (Carretta and Forney 2004, Laake et al. 1998); photographic mark-recapture analyses of large whales (Calambokidis et al. 2007); Hawaiian small cetaceans (Baird et al. 2005); and southern resident killer whales (Center For Whale Research, unpublished data). Often, multiple abundance estimates are available for a given cetacean stock and decisions about which estimates to utilize in the stock assessment report must be made, based on what is known about the stock. Considerable interannual variability in abundance estimates can occur because the range of many cetacean stocks extends beyond the U.S. EEZ boundaries where surveys are conducted. For this reason, multi-year averages are utilized in the stock assessments when possible. Abundance estimates for U.S. west coast coast cetacean stocks are available in two separate publications (Barlow and Forney 2007, Forney 2007). The Barlow and Forney (2007) paper presents a 1991-2005 time series of abundance estimates, based on large-scale vessel line-transect surveys of California, Oregon, and Washington waters out to 300 nmi. The Forney (2007) report presents estimates from a 2005 vessel line transect survey that is included in the Barlow and Forney (2007) paper, however, the Forney (2007) report includes additional analyses from fine-scale strata from coastal waters of the Olympic, Farallones, and Monterey Bay National Marine Sanctuaries. These coastal strata appear to represent seasonally important habitat for some species as Dall's porpoise, northern right whale dolphin, humpback whales, Pacific white-sided dolphin, and blue whales. Inclusion of these coastal strata resulted in improved estimates of abundance for several species and thus, the Forney (2007) report is used for reporting 2005 abundance estimates, while the Barlow and Forney (2007) paper is used for 2001 estimates. For most U.S. west coast cetaceans, average abundances reported in the draft 2008 Pacific Marine Mammal Stock Assessments represent the geometric mean* of 2001 estimates reported by Barlow and Forney (2007) and 2005 estimates reported by Forney In the case of humpback and blue whales, mark-recapture estimates may sometimes be substituted for line-transect estimates if the precision of the mark-recapture estimate is superior. ^{*} Current stock assessment preparation guidelines currently recommend reporting a weighted arithmetic mean, weighted by the inverse of the variances of the individual abundance estimates. However, the authors of the Pacific stock assessment reports have found that the unweighted geometric mean is a more appropriate measure of mean abundance for cases where estimates are log-normally distributed. The problem with the weighted arithmetic mean is easily understood by example. Consider a case where two equally precise abundance estimates are available; one relatively large, the other small (e.g., $N_1 = 20,000$, $CV_1 = 0.3$; $N_2 = 5,000$, $CV_2 = 0.3$). Calculating a mean abundance using the inverse variance method arbitrarily underweights the larger estimate (due to its larger variance), resulting in a negatively biased mean estimate ($N_{\text{mean}} = 5,882$). By comparison, the geometric mean of the two estimates is $N_{\text{geomean}} = 10,000$, which is equivalent to calculating the mean of the logarithms of N_1 and N_2 . #### References - Appler, J., J. Barlow, and S. Rankin, 2004. Marine mammal data collected during the Oregon, California and Washington line-transect expedition (ORCAWALE) conducted aboard the NOAA ships McARTHUR and DAVID STARR JORDAN, July December 2001. NOAA Techinal Memorandum NOAA-TM-NMFS-SWFSC-359. 32p. - Baird, R.W., A.M. Gorgone, D.L. Webster, D.J. McSweeney, J.W. Durban, A.D. Ligon, D.R. Salden, and M.H. Deakos. 2005. False killer whales around the Main Hawaiian Islands: An assessment of inter-island movements and population size using individual photo-identification. Contract Report JJ133F04SE0120 prepared for the Pacific Islands Fisheries Science Center, National Marine Fisheries Service, 2570 Dole Street, Honolulu, Hawaii, 96822. 24pp. - Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14. - Barlow, J. 1997. Preliminary estimates of cetacean abundance off California, Oregon, and Washington based on a 1996 ship survey and comparisons of passing and closing modes. Admin. Rep. LJ-97-11. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 25 pp. - Barlow, J., S. Rankin, E. Zele, and J. Appler. 2004. Marine mammal data collected during the Hawaiian Islands Cetacean and Ecosystem Assessment Survey (HICEAS) conducted aboard the NOAA ships McArthur and David Starr Jordan, July December 2002. U.S. Department of Commerce, NOAA Technical Memorandum, NMFS-SWFSC-362. 39 p. - Barlow, J. 2006. Cetacean abundance in Hawaiian waters estimated from a summer/fall survey in 2002. Mar. Mamm. Sci. 22(2):446-464. - Barlow, J. and S. Rankin. 2007. False killer whale abundance and density: Preliminary estimates for the PICEAS study area south of Hawaii and new estimates for the US EEZ around Hawaii. Administrative Report LJ-07-02. Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037. - Barlow, J. and K.A. Forney. 2007. Abundance and population density of cetaceans in the California Current ecosystem. Fishery Bulletin 105:509-526. - Calambokidis, J., A. Douglas, E. Falcone, and L. Schlender. 2007. Abundance of blue whales off the U.S. west coast using photo identification. Contract Report AB133F06SE3906 to Southwest Fisheries Science Center. 13p. - Carretta, J. V., K. A. Forney, and J. L. Laake. 1998. Abundance of southern California
coastal bottlenose dolphins estimated from tandem aerial surveys. Mar. Mamm. Sci. 14(3):655-675. - Carretta, J.V. and K.A. Forney. 2004. Preliminary estimates of harbor porpoise abundance in California from 1999 and 2002 aerial surveys. SWFSC Administrative Report LJ-04-01, available from Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA, USA. 13pp. - Forney, K.A., D. Hanan, and J. Barlow. 1991. Detecting trends in harbor porpoise abundance from aerial surveys using analysis of covariance. Fish. Bull. 89:367-377. - Forney, K.A. 1995. A decline in the abundance of harbor porpoise, Phocoena phocoena, in nearshore waters off California, 1986-93. Fish. Bull. 93(4):741-748. - Forney, K.A., J. Barlow, and J.V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93(4):15-26. - Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27p. - Laake, J., J. Calambokidis, S. Osmek. 1998. Survey report for the 1997 aerial surveys for harbor porpoise and other marine mammals of Oregon, Washington, and British Columbia outside waters. Alaska Fisheries Science Center Processed Report 98-10. pp. 77-97. - Mangels, K.F. and T. Gerrodette. 1994. Report of cetacean sightings during a marine mammal survey in the eastern Pacific Ocean and the Gulf of California aboard the NOAA ships McArthur and David Starr Jordan July 28 _ November 6, 1993. U.S. Dep. Commer., NOAA Tech. Memo. NMFS_SWFSC_221. 88 pp. - Mobley, J.R., Jr, S. S. Spitz, K. A. Forney, R. A. Grotefendt, and P. H. Forestall. 2000. Distribution and abundance of odontocete species in Hawaiian waters: preliminary results of 1993-98 aerial surveys Admin. Rep. LJ-00-14C. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 26 pp. - Mobley, J.R. 2001. Results of 2001 aerial surveys north of Kauai. Report to North Pacific Acoustic Laboratory - program. 20 pp. Available as downloadable pdf file at: http://socrates.uhwo.hawaii.edu/SocialSci/jmobley/2001NPAL.pdf - Mobley, J.R. 2002. Results of 2002 aerial surveys north of Kauai. Report to North Pacific Acoustics Laboratory program. 20 pp. Available as downloadable pdf file at: http://socrates.uhwo.hawaii.edu/SocialSci/jmobley/2002NPAL.pdf - Mobley, J.R. 2003. Results of 2003 aerial surveys north of Kauai. Report to North Pacific Acoustics Laboratory program. 20 pp. Available as downloadable pdf file at: http://socrates.uhwo.hawaii.edu/SocialSci/jmobley/2003NPAL.pdf - Mobley, J.R. 2004. Results of 2004 aerial surveys north of Kauai. Report to North Pacific Acoustics Laboratory program. 25 pp. Available as downloadable pdf file at: http://socrates.uhwo.hawaii.edu/SocialSci/jmobley/2004NPAL.pdf - Von Saunder, A. and J. Barlow. 1999. A report of the Oregon, California, and Washington line-transect experiment (ORCAWALE) conducted in west coast waters during summer/fall 1996. U.S. Dep. Commer., NOAA Tech. Memo. NMFS_SWFSC_264. 49 pp. | Appendix 3, Draft 2008 Pacifi | c Marina Mamma | al Stock Accoccmo | nt Poporte cummary | |-------------------------------|----------------|-------------------|----------------------| | Appendix 3. Draft 2008 Pacifi | c Marine Mamma | ai Stock Assessme | ent Reports summary. | | Appendix 3. Drait 2000 F | -acilic ivialille ivialillilai Slock Asses | | reports sur | ililiary. | | | | | Annual
Mortality | Fishery
Mortality | Out and a set a | | | | Lord | |--|--|----------------|---------------------|--------------|------------------|-------|-----------------|----------------|---------------------|----------------------|---------------------|--------------|--------------|--------------|-------------------------| | Species | Stock Area | NMFS
Center | N est | CV N est | N min | R max | Fr | PBR | + Serious
Injury | + Serious
Injury | Strategic
Status | Recent Ab | undance Surv | reys | Last
Revised | | California sea lion | U.S. | swc | 238,000 | n/a | 141,842 | 0.12 | 1 | 8,511 | ≥232 | ≥159 | N | 2003 | 2004 | 2005 | 2007 | | Harbor seal | California | SWC | 34,233 | n/a | 31,600 | 0.12 | 1 | 1,896 | ≥389 | 389 | N | 1995 | 2002 | 2004 | 2005 | | Harbor seal | Oregon/Washington Coast | AKC | 24,732 | 0.12 | | 0.12 | | 1,343 | ≥15.2 | ≥13 | N | 1999 | | | 2007 | | Harbor seal | Washington Inland Waters | AKC | 14,612 | 0.15 | 12,844 | 0.12 | 1 | 771 | ≥34 | ≥30 | N | 1999 | | | 2003 | | Northern Elephant Seal | California breeding | SWC | 124,000 | n/a | 74,913 | 0.117 | 1 | 4,382 | ≥10.4 | ≥8.8 | N | 2001 | 2002 | 2005 | 2007 | | Guadalupe Fur Seal | Mexico to California | SWC | 7,408 | n/a | | 0.12 | 0.5 | 91 | 0 | 0 | Y | 1993 | | | 2000 | | Northern Fur Seal | San Miguel Island | AKC | 9,424 | n/a | 5,096 | 0.086 | 1 | 219 | ≥1.0 | ≥1.0 | N | 2003 | 2004 | 2005 | 2006 | | Monk Seal | Hawaii | PIC | 1,247 | n/a | 1,214 | 0.07 | 0.1 | undet | unk | unk | Y | 2004 | 2005 | 2006 | 2007 | | | | | 1,208 | | 1,183 | | | | | | | | | | 2008 | | Harbor porpoise | Morro Bay | SWC | 1,656 | 0.39 | 1,206 | 0.04 | 0.4 | 10 | 4.5 | 4.5 | N | 1997 | 1999 | 2002 | 2004 | | Harbor porpoise Harbor porpoise | Monterey Bay San Francisco – Russian River | SWC | 1,613
8,521 | 0.42
0.38 | 1,149
6,254 | 0.04 | 0.45
0.5 | 10
63 | 9.5
≥0.8 | 9.5
≥0.8 | N
N | 1997
1997 | 1999
1999 | 2002
2002 | 2004 | | Harbor porpoise | Northern CA/Southern OR | SWC | 17,763 | 0.39 | 12,940 | 0.04 | 1 | 259 | ≥0.6 | ≥0.8 | N | 1997 | 1999 | 2002 | 2003 | | Harbor porpoise | Oregon/Washington Coast | AKC | 37,745 | 0.38 | | 0.04 | 0.5 | 277 | 0.6 | 0.6 | N | 1991 | 1997 | 2002 | 2006 | | Harbor porpoise | Washington Inland Waters | AKC | 10,682 | 0.38 | 7,841 | 0.04 | 0.4 | 63 | 15.2 | 15.4 | N | 1996 | 2002 | 2003 | 2006 | | Dall's porpoise | California/Oregon/Washington | swc | 57,549 | 0.34 | 43,425 | 0.04 | 0.4 | 347 | 1.8 | 1.4 | N | 1996 | 2001 | 2005 | 2007 | | | | | 48,376 | 0.24 | 39,709 | | | 318 | 1.6 | | | | | | 2008 | | Pacific white-sided dolphin | California/Oregon/Washington | swc | 25,233 | 0.25 | 20,441 | 0.04 | 0.45 | 184 | 5.6 | 5.6 | N | 1996 | 2001 | 2005 | 2007 | | | | | 20,719 | 0.22 | 17,201 | | | 155 | 1.4 | 1.4 | | | | | 2008 | | Risso's dolphin | California/Oregon/Washington | swc | 12,093 | 0.24 | 9,947 | 0.04 | 0.4 | 80 | 6.6 | 6.6 | _ N | 1996 | 2001 | 2005 | 2007 | | | | | 11,621 | 0.17 | 10,054 | | | | 4.9 | 4.9 | | | | | 2008 | | Bottlenose dolphin | California Coastal | SWC | 323 | 0.13 | 290 | 0.04 | 0.5 | 2.4 | 0.2 | 0.2 | N | 2000 | 2004 | 2005 | 2006
2008 | | Bottlenose dolphin | California/Oregon/Washington Offshore | swc | 3,257 | 0.43 | 2,295 | 0.04 | 0.5 | 23 | 0.2 | 0.2 | N | 1996 | 2001 | 2005 | 2007 | | | | | 3,495 | 0.31 | 2,706 | | | 27 | | | | | | | 2008 | | Striped dolphin | California/Oregon/Washington | swc | 23,883 | 0.44 | 16,737 | 0.04 | 0.5 | 167 | 0 | 0 | N | 1996 | 2001 | 2005 | 2007 | | | | | 17,925 | 0.37 | 13,251 | | | 132 | | | | | | | 2008 | | Common dolphin, short-beaked | California/Oregon/Washington | swc | 4 87,622 | 0.26 | 392,687 | 0.04 | 0.5 | 3,927 | 59 | 59 | N | 1996 | 2001 | 2005 | 2007 | | | | | 392,733 | 0.18 | 338,708 | | | 3,387 | 77 | 77 | | | | | 2008 | | Common dolphin, long-beaked | California/Oregon/Washington | swc | 1,893 | 0.65 | 1,152 | 0.04 | 0.48 | 44 | 12.5 | 12.5 | ¥ | 1996 | 2001 | 2005 | 2007 | | <u>. </u> | | | 15,335 | 0.56 | 9,880 | | | 95 | | | N | | | | 2008 | | Northern right whale dolphin | California/Oregon/Washington | swc | 15,305 | 0.32 | 11,754 | 0.04 | 0.48 | 113 | 18 | 18 | N | 1996 | 2001 | 2005 | 2007 | | | | | 12,876 | 0.30 | 10,031 | | 0.4 | 80 | 3.8 | 3.8 | | | | | 2008 | | Killer whale | Eastern North Pacific Offshore | swc | 422 | 0.29 | 331 | 0.04 | 0.5 | 3.3 | 0 | 0 | N | 1996 | 2001 | 2005 | 2007 | | | | | 353 | | 278 | | | 2.8 | | | | | | | 2008 | | Killer whale | Eastern North Pacific Southern Resident | AKC | 89 | und | 89 | 0.04 | 0.1 | 0.18 | 0.2 | 0 | Υ | 2004 | 2005 | 2006 | 2007 | | - Tillor Illiano | | | 86 | und | 86 | 0.54 | ••• | 0.17 | J | • | • | | | | 2008 | | Short-finned pilot whale | California/Oregon/Washington | swc | 245 | 0.97 | 123 | 0.04 | 0.4 | 0.98 | 1 | 1 | Υ | 1996 | 2001 | 2005 | 2007 | | Short-limited phot whate | Camorina Oregon, Washington | 0110 | 243 | 0.31 | 123 | 0.04 | V. T | 0.30 | • | • | • | 1330 | 2001 | 2003 | 2008 | | Baird's beaked whale | California/Oregon/Washington | swc | 313 | 0.55 | 203 | 0.04 | 0.5 | 2.0 | 0.2 | 0 | N | 1996 | 2001 | 2005 | 2007 | | Dailu S Deakeu Wildle | Camornia Oregon/Washington | 3440 | | | | 0.04 | 0.5 | | V.2 | U | 14 | 1990 | 2001 | 2005 | | | | | | 540 | 0.54 | 353 | | | 3.5 | | | | | | | 2008 | Total Annual unk = unknown; undet = undetermined; n/a = not applicable Appendix 3. Draft 2008 Pacific Marine Mammal Stock Assessment Reports summary. | Species | Stock Area | NMFS
Center | N est | CV N est | N min | R max | Fr | PBR | Mortality
+ Serious
Injury | Mortality
+ Serious
Injury | Strategic
Status | Recent Ab | undance Surv | reys | Last
Revised | |---------------------------------|-------------------------------|----------------|------------------|--------------|------------------|-------|--------------|-----------------|----------------------------------|----------------------------------|---------------------|-----------|--------------|--------------|-------------------------| | | | | | | | | | | | | | | | - | | | Mesoplodont beaked whales | California/Oregon/Washington | swc | 1,024 | 0.77 | 576 | 0.04 | 0.5 | 5.7 | 0 | 0 | N | 1996 | 2001 | 2005 | 2007
2008 | | Cuvier's
beaked whale | California/Oregon/Washington | swc | 2,171 | 0.75 | 1,234 | 0.04 | 0.4 | 10 | <u>≥0.2</u> | 0 | N | 1996 | 2001 | 2005 | 2007 | | Carror o Boarloa Irriaio | Camorina Crogory Nacining Con | | 2,830 | 0.73 | | 0.0. | ••• | 13 | 0 | · | •• | | | | 2008 | | | | | 2,830 | 0.73 | 1,629 | | | | - | | | | | | | | Pygmy Sperm whale | California/Oregon/Washington | swc | unk | unk | unk | 0.04 | 0.5 | undet | 0.2 | 0 | N | 1996 | 2001 | 2005 | 2007 | | | | | | | | | | | ≥0.2 | ≥0.2 | | | | | 2008 | | Dwarf sperm whale | California/Oregon/Washington | swc | unk | unk | unk | 0.04 | 0.5 | undet | 0 | 0 | N | 1996 | 2001 | 2005 | 2007 | | | | | | | | | | | | | | | | | 2008 | | Sperm whale | California/Oregon/Washington | swc | 2,265 | 0.34 | 1,719 | 0.04 | 0.1 | 3.4 | 0.2 | 0.2 | Y | 1996 | 2001 | 2005 | 2007 | | | | | 2,853 | 0.25 | 2,326 | | 0.2 | 9.3 | | | | | | | 2008 | | Humpback whale | California/Oregon/Washington | swc | 1,396 | 0.15 | 1,236 | 0.08 | 0.1 | 2.5 | <u>≥2.2</u> | ≥ 1.8 | Υ | 1996 | 2001 | 2005 | 2007 | | Tumpsack whate | Camorina Oregon Washington | 00 | | | | 0.00 | ٠ | 2.0 | | | | 1550 | 2001 | 2000 | | | | | | 1,391 | 0.13 | | | | | ≥ 2.6 | ≥ 2.6 | | | | | 2008 | | Blue whale | Eastern North Pacific | swc | 1,186 | 0.19 | 1,005 | 0.04 | 0.1 | 1.0 | 0.6 | 0 | Y | 1996 | 2001 | 2005 | 2007 | | | | | 1,368 | 0.22 | 1,136 | | | | | | | | | | 2008 | | Fin whale | California/Oregon/Washington | swc | 3,454 | 0.27 | 2,760 | 0.04 | 0.3 | 16 | 1.4 | 0 | Υ | 1996 | 2001 | 2005 | 2007 | | i iii whale | Camorina Oregon Washington | 00 | | | | 0.04 | 0.0 | | | Ü | • | 1550 | 2001 | 2000 | | | | | | 2,636 | 0.15 | , | | | 14 | | | | | | | 2008 | | Bryde's whale | California/Oregon/Washington | SWC | unk | unk | unk | 0.04 | 0.5 | undet | 0 | 0 | N | 1996 | 2001 | 2005 | 2007 | | Sei whale | Eastern North Pacific | swc | 43 | 0.61 | 27 | 0.04 | 0.1 | 0.05 | 0 | 0 | Y | 1996 | 2001 | 2005 | 2007 | | | | | 46 | 0.61 | 28 | | | | | | | | | | 2008 | | Minke whale | California/Oregon/Washington | swc | 898 | 0.65 | 544 | 0.04 | 0.5 | 5.4 | 0 | 0 | N | 1996 | 2001 | 2005 | 2007 | | | | | 806 | 0.63 | | | | 5.0 | | | | | | | 2008 | | Rough-toothed dolphin | Hawaii | swc | 19,904 | 0.52 | | 0.04 | 0.5 | 132 | unk | unk | N | | 2002 | 2004 | 2004 | | Risso's dolphin | Hawaii | swc | 2,351 | 0.65 | 1,426 | 0.04 | 0.5 | 14 | unk | unk | N | | 2002 | 2004 | 2004 | | Bottlenose dolphin | Hawaii | swc | 3,263 | 0.60 | | 0.04 | 0.5 | 20 | ≥0.2 | ≥0.2 | N | | 2002 | 2004 | 2006 | | Pantropical spotted dolphin | Hawaii | swc | 10,260 | 0.41 | 7,362 | 0.04 | 0.5 | 74 | ≥0.8 | ≥0.8 | N N | | 2002 | 2004 | 2004 | | | | | • | | | | | | | | | | | | | | Spinner dolphin Striped dolphin | Hawaii
Hawaii | SWC | 2,805
10,385 | 0.66
0.48 | | 0.04 | 0.5
0.5 | 17
71 | 0
unk | 0
unk | N
N | | 2002
2002 | 2004
2004 | 2004 | | Fraser's dolphin | Намаіі | SWC | 16,836 | 1.11 | 7,078 | 0.04 | 0.5 | 79 | unk | unk | N N | | 2002 | 2004 | 2004 | | Melon-headed whale | Hawaii | SWC | 2,947 | 1.11 | 1,386 | 0.04 | 0.5 | 14 | unk | unk | N N | | 2002 | 2004 | 2004 | | Pygmy killer whale | Hawaii | SWC | 817 | 1.12 | 382 | 0.04 | 0.5 | 3.8 | unk | unk | N | | 2002 | 2004 | 2004 | | False killer whale | Hawaii Pelagic | SWC | 484 | 0.93 | 249 | 0.04 | 0.48 | 2. 4 | 4.9 | 4.9 | Y | | 2002 | 2004 | 2007 | | | | | | | | | 0.45 | 2.2 | 5.7 | 5.7 | | | | | 2008 | | False killer whale | Palmyra Atoli | SWC | 1,329 | 0.65 | 806 | 0.04 | 0.48
0.45 | 7.7 | 1.9
1.2 | 1.9 | N | | | 2005 | 2007
2008 | | False killer whale | Hawaii Insular | SWC | 123 | 0.72 | 76 | 0.04 | 0.45 | 7.2
0.8 | 0 | 1.2
0 | N | 2000 | 2002 | 2004 | 2008 | | Killer whale | Hawaii | SWC | 430 | 0.72 | 250 | 0.04 | 0.5 | 2.5 | unk | unk | N | | 2002 | 2004 | 2004 | | Pilot whale, short-finned | Hawaii | SWC | 8,846 | 0.49 | | 0.04 | 0.5 | 60 | 0.8 | 0.8 | N | | 2002 | 2004 | 2006 | | Blainville's beaked whale | Hawaii | SWC | 2,138 | 0.77 | 1,204 | 0.04 | 0.4 | 9.6 | 0.8 | 8.0 | N | | 2002 | 2004 | 2004 | | Longman's Beaked Whale | Hawaii | swc | 766 | 1.05 | 371 | 0.04 | 0.5 | 3.7 | unk | unk | N | | 2002 | 2004 | 2004 | | Cuvier's beaked whale | Hawaii | SWC | 12,728 | 0.83 | 6,919 | 0.04 | 0.5 | 69 | unk | unk | N | | 2002 | 2004 | 2004 | | Pygmy sperm whale | Hawaii | swc | 7,251 | 0.77 | 4,082 | 0.04 | 0.5 | 41 | unk | unk | N | | 2002 | 2004 | 2004 | | Dwarf sperm whale | Hawaii | SWC | 19,172 | 0.66 | | 0.04 | 0.5 | 116 | unk | unk | N | | 2002 | 2004 | 2004 | | Sperm whale | Hawaii | SWC | 7,082 | 0.30 | | 0.04 | 0.1 | 11 | 0 | 0 | Y | | 2002 | 2004 | 2004 | | Blue whale | Hawaii | SWC | unk | 0.70 | unk | 0.04 | 0.1 | undet | unk | unk | Y
Y | | 2002 | 2004 | 2004 | | Fin whale Bryde's whale | Hawaii
Hawaii | SWC | 174
493 | 0.72
0.34 | 101
373 | 0.04 | 0.1
0.5 | 0.2
3.7 | unk
unk | unk
unk | N Y | | 2002 | 2004 | 2004 | | Sei whale | Hawaii | SWC | 77 | 1.06 | | 0.04 | 0.1 | 0.1 | unk | unk | Y | | 2002 | 2004 | 2004 | | Minke whale | Hawaii | SWC | unk | | unk | 0.04 | 0.5 | undet | unk | unk | N | | 2002 | 2004 | 2004 | | | | | | | 170 | | | | | | | | | | | Total Annual Annual Fishery 179